Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 5 de 5
Add filters

Document Type
Year range
biorxiv; 2022.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2022.11.11.516125


SARS-CoV-2 mutational variants evade humoral immune responses elicited by vaccines and current monoclonal antibody (mAb) therapies. Novel antibody-based treatments will thus need to exhibit broad neutralization against different variants. Bispecific antibodies (bsAbs) combine the specificities of two distinct antibodies into one antibody taking advantage of the avidity, synergy and cooperativity provided by targeting two different epitopes. Here we used controlled Fab-arm exchange (cFAE), a versatile and straightforward method, to produce bsAbs that neutralize SARS-CoV and SARS-CoV-2 variants, including Omicron and its subvariants, by combining potent SARS-CoV-2-specific neutralizing antibodies with broader but less potent antibodies that also neutralize SARS-CoV. We demonstrate that the parental IgG's rely on avidity for their neutralizing activity by comparing their potency to bsAbs containing one irrelevant "dead" Fab arm. We used single particle mass photometry to measure formation of antibody:spike complexes, and determined that bsAbs increase binding stoichiometry compared to corresponding cocktails, without a loss of binding affinity. The heterogeneous binding pattern of bsAbs to spike (S), observed by negative-stain electron microscopy and mass photometry provided evidence for both intra- and inter-spike crosslinking. This study highlights the utility of cross-neutralizing antibodies for designing bivalent or multivalent agents to provide a robust activity against circulating variants, as well as future SARS-like coronaviruses.

medrxiv; 2022.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2022.04.08.22273602


ImportanceIn patients with hematologic malignancies, the immunogenicity of the standard 2-dose mRNA-1273 coronavirus disease 19 (COVID-19) vaccination schedule is often insufficient due to underlying disease and current or recent therapy. ObjectiveTo determine whether a 3rd mRNA-1273 vaccination raises antibody concentrations in immunocompromised hematology patients to levels obtained in healthy individuals after the standard 2-dose mRNA-1273 vaccination schedule. DesignProspective observational cohort study. SettingFour academic hospitals in the Netherlands. Participants584 evaluable immunocompromised hematology patients, all grouped in predefined cohorts spanning the spectrum of hematologic malignancies. ExposureOne additional vaccination with mRNA-1273 5 months after completion of the standard 2-dose mRNA-1273 vaccination schedule. Main Outcomes and MeasuresSerum IgG antibodies to spike subunit 1 (S1) antigens prior to and 4 weeks after each vaccination, and pseudovirus neutralization of wildtype, delta and omicron variants in a subgroup of patients. ResultsIn immunocompromised hematology patients, a 3rd mRNA-1273 vaccination led to median S1 IgG concentrations comparable to concentrations obtained by healthy individuals after the 2-dose mRNA-1273 schedule. The rise in S1 IgG concentration after the 3rd vaccination was most pronounced in patients with a recovering immune system, but potent responses were also observed in patients with persistent immunodeficiencies. Specifically, patients with myeloid malignancies or multiple myeloma, and recipients of autologous or allogeneic hematopoietic cell transplantation (HCT) reached median S1 IgG concentrations similar to those obtained by healthy individuals after a 2-dose schedule. Patients on or shortly after rituximab therapy, CD19-directed chimeric antigen receptor T cell therapy recipients, and chronic lymphocytic leukemia patients on ibrutinib were less or unresponsive to the 3rd vaccination. In the 27 patients who received cell therapy between the 2nd and 3rd vaccination, S1 antibodies were preserved, but a 3rd mRNA-1273 vaccination did not significantly enhance S1 IgG concentrations except for multiple myeloma patients receiving autologous HCT. A 3rd vaccination significantly improved neutralization capacity per antibody. Conclusions and RelevanceThe primary schedule for immunocompromised patients with hematologic malignancies should be supplemented with a delayed 3rd vaccination. B cell lymphoma patients and allogeneic HCT recipients need to be revaccinated after treatment or transplantation. Trial RegistrationEudraCT 2021-001072-41 Key pointsO_ST_ABSQuestionC_ST_ABSCan a 3rd mRNA-1273 vaccination improve COVID-19 antibody concentrations in immunocompromised hematology patients to levels similar to healthy adults after the standard 2-dose mRNA-1273 schedule? FindingsIn this prospective observational cohort study that included 584 immunocompromised hematology patients, a 3rd mRNA-1273 vaccination significantly improved SARS-CoV-2 antibody concentrations to levels not significantly different from those obtained by healthy individuals after the standard 2-dose mRNA-1273 vaccination schedule. Pseudovirus neutralization capacity per antibody of wild type virus and variants of concern also significantly improved. MeaningThe primary COVID-19 vaccination schedule for immunocompromised patients with hematologic malignancies should be supplemented with a delayed 3rd vaccination.

medrxiv; 2022.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2022.01.03.21268582


Large-scale vaccination campaigns have prevented countless SARS-CoV-2 infections, hospitalizations and deaths. However, the emergence of variants that escape from immunity challenges the effectiveness of current vaccines. Given this continuing evolution, an important question is when and how to update SARS-CoV-2 vaccines to antigenically match circulating variants, similar to seasonal influenza viruses where antigenic drift necessitates periodic vaccine updates. Here, we studied SARS-CoV-2 antigenic drift by assessing neutralizing activity against variants-of-concern (VOCs) of a unique set of sera from patients infected with a range of VOCs. Infections with ancestral or Alpha strains induced the broadest immunity, while individuals infected with other VOCs had more strain-specific responses. Omicron was substantially resistant to neutralization by sera elicited by all other variants. Antigenic cartography revealed that all VOCs preceding Omicron belong to one antigenic cluster, while Omicron forms a new antigenic cluster associated with immune escape and likely requiring vaccine updates to ensure vaccine effectiveness.

medrxiv; 2021.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2021.09.27.21264163


BackgroundEmerging and future SARS-CoV-2 variants may jeopardize the effectiveness of vaccination campaigns. Therefore, it is important to know how the different vaccines perform against diverse SARS-CoV-2 variants. MethodsIn a prospective cohort of 165 SARS-CoV-2 naive health care workers, vaccinated with either one of four vaccines (BNT162b2, mRNA-1273, AZD1222 or Ad26.COV2.S), we performed a head-to-head comparison of the ability of sera to recognize and neutralize SARS-CoV-2 variants of concern (VOCs; Alpha, Beta, Gamma, Delta and Omicron). Repeated serum sampling was performed 5 times during a year (from January 2021 till January 2022), including before and after booster vaccination with BNT162b2. FindingsFour weeks after completing the initial vaccination series, SARS-CoV-2 wild-type neutralizing antibody titers were highest in recipients of BNT162b2 and mRNA-1273 (geometric mean titers (GMT) of 197 [95% CI 149-260] and 313 [95% CI 218-448], respectively), and substantially lower in those vaccinated with the adenovirus vector-based vaccines AZD1222 and Ad26.COV2.S (GMT of 26 [95% CI 18-37] and 14 [95% CI 8-25] IU/ml, respectively). These findings were robust for adjustment to age and sex. VOCs neutralization was reduced in all vaccine groups, with the largest (9- to 80-fold) reduction in neutralization observed against the Omicron variant. The booster BNT162b2 vaccination increased neutralizing antibody titers for all groups with substantial improvement against the VOCs including the Omicron variant. Study limitations include the lack of cellular immunity data. ConclusionsOverall, this study shows that the mRNA vaccines appear superior to adenovirus vector-based vaccines in inducing neutralizing antibodies against VOCs four weeks after initial vaccination and after booster vaccination.

medrxiv; 2021.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2021.05.25.21257797


Background The urgent need for, but limited availability of, SARS-CoV-2 vaccines worldwide has led to widespread consideration of dose sparing strategies, particularly single vaccine dosing of individuals with prior SARS-CoV-2 infection. Methods We evaluated SARS-CoV-2 specific antibody responses following a single-dose of BNT162b2 (Pfizer-BioNTech) mRNA vaccine in 155 previously SARS-CoV-2-infected individuals participating in a population-based prospective cohort study of COVID-19 patients. Participants varied widely in age, comorbidities, COVID-19 severity and time since infection, ranging from 1 to 15 months. Serum antibody titers were determined at time of vaccination and one week after vaccination. Responses were compared to those in SARS-CoV-2-naive health care workers after two BNT162b2 mRNA vaccine doses. Results Within one week of vaccination, IgG antibody levels to virus spike and RBD proteins increased 27 to 29-fold and neutralizing antibody titers increased 12-fold, exceeding titers of fully vaccinated SARS-CoV-2-naive controls (95% credible interval (CrI): 0.56 to 0.67 v. control 95% CrI: -0.16 to -0.02). Pre-vaccination neutralizing antibody titers had the largest positive mean effect size on titers following vaccination (95% CrI (0.16 to 0.45)). COVID-19 severity, the presence of comorbidities and the time interval between infection and vaccination had no discernible impact on vaccine response. Conclusion A single dose of BNT162b2 mRNA vaccine up to 15 months after SARS-CoV-2 infection provides neutralizing titers exceeding two vaccine doses in previously uninfected individuals. These findings support wide implementation of a single-dose mRNA vaccine strategy after prior SARS-CoV-2 infection.