Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
1.
Front Med (Lausanne) ; 9: 893292, 2022.
Article in English | MEDLINE | ID: covidwho-1903044

ABSTRACT

Disease X represents a yet unknown human pathogen which has potential to cause a serious international epidemic or pandemic. The COVID-19 pandemic has illustrated that despite being at increased risk of severe disease compared with the general population, pregnant women were left behind in the development and implementation of vaccination, resulting in conflicting communications and changing guidance about vaccine receipt in pregnancy. Based on the COVID-19 experience, the COVAX Maternal Immunization Working Group have identified three key factors and five broad focus topics for consideration when proactively planning for a disease X pandemic, including 10 criteria for evaluating pandemic vaccines for potential use in pregnant women. Prior to any disease X pandemic, collaboration and coordination are needed to close the pregnancy data gap which is currently a barrier to gender equity in health innovation, which will aid in allowing timely access to life-saving interventions including vaccines for pregnant women and their infants.

2.
N Engl J Med ; 386(22): 2084-2096, 2022 06 02.
Article in English | MEDLINE | ID: covidwho-1830290

ABSTRACT

BACKGROUND: Coronavirus-like particles (CoVLP) that are produced in plants and display the prefusion spike glycoprotein of the original strain of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are combined with an adjuvant (Adjuvant System 03 [AS03]) to form the candidate vaccine. METHODS: In this phase 3, multinational, randomized, placebo-controlled trial conducted at 85 centers, we assigned adults (≥18 years of age) in a 1:1 ratio to receive two intramuscular injections of the CoVLP+AS03 vaccine or placebo 21 days apart. The primary objective of the trial was to determine the efficacy of the CoVLP+AS03 vaccine in preventing symptomatic coronavirus disease 2019 (Covid-19) beginning at least 7 days after the second injection, with the analysis performed after the detection of at least 160 cases. RESULTS: A total of 24,141 volunteers participated in the trial; the median age of the participants was 29 years. Covid-19 was confirmed by polymerase-chain-reaction assay in 165 participants in the intention-to-treat population; all viral samples that could be sequenced contained variants of the original strain. Vaccine efficacy was 69.5% (95% confidence interval [CI], 56.7 to 78.8) against any symptomatic Covid-19 caused by five variants that were identified by sequencing. In a post hoc analysis, vaccine efficacy was 78.8% (95% CI, 55.8 to 90.8) against moderate-to-severe disease and 74.0% (95% CI, 62.1 to 82.5) among the participants who were seronegative at baseline. No severe cases of Covid-19 occurred in the vaccine group, in which the median viral load for breakthrough cases was lower than that in the placebo group by a factor of more than 100. Solicited adverse events were mostly mild or moderate and transient and were more frequent in the vaccine group than in the placebo group; local adverse events occurred in 92.3% and 45.5% of participants, respectively, and systemic adverse events in 87.3% and 65.0%. The incidence of unsolicited adverse events was similar in the two groups up to 21 days after each dose (22.7% and 20.4%) and from day 43 through day 201 (4.2% and 4.0%). CONCLUSIONS: The CoVLP+AS03 vaccine was effective in preventing Covid-19 caused by a spectrum of variants, with efficacy ranging from 69.5% against symptomatic infection to 78.8% against moderate-to-severe disease. (Funded by Medicago; ClinicalTrials.gov number, NCT04636697.).


Subject(s)
Adjuvants, Vaccine , COVID-19 Vaccines , COVID-19 , Adjuvants, Immunologic/administration & dosage , Adjuvants, Immunologic/adverse effects , Adjuvants, Immunologic/therapeutic use , Adjuvants, Vaccine/administration & dosage , Adjuvants, Vaccine/adverse effects , Adjuvants, Vaccine/therapeutic use , Adult , Antibodies, Viral , COVID-19/genetics , COVID-19/prevention & control , COVID-19/virology , COVID-19 Vaccines/administration & dosage , COVID-19 Vaccines/adverse effects , COVID-19 Vaccines/therapeutic use , Double-Blind Method , Humans , Injections, Intramuscular , SARS-CoV-2/genetics , Vaccination
3.
Midwifery ; 105: 103222, 2022 Feb.
Article in English | MEDLINE | ID: covidwho-1616664

ABSTRACT

BACKGROUND: Vaccination against pertussis and seasonal influenza is recommended for all pregnant women in the UK. More recently COVID-19 vaccination has also been offered to women in pregnancy. OBJECTIVES: To evaluate the uptake of vaccines in pregnant women within a midwife-led immunisation clinic and to assess factors influencing pregnant women's decisions about accepting vaccination. METHODS: Uptake of vaccines amongst pregnant women referred to a single UK centre for antenatal care between 01/01/19 and 02/10/19 was assessed. Interviews with 20 pregnant women explored views of antenatal vaccination and experiences of the vaccination service. FINDINGS: Amongst 4420 women, uptake was 90.6% for pertussis and 78.8% for influenza vaccines. Factors influencing vaccine-related decision-making amongst 20 interviewed women were: healthcare professional recommendation, perceived susceptibility and risk of infection, and previous experience of vaccination and vaccine-preventable disease. CONCLUSIONS AND IMPLICATIONS FOR PRACTICE: Uptake of pertussis and influenza vaccines within a secondary care immunisation service was higher than the national or regional average. The model of vaccine delivery was associated with high levels of satisfaction. This model of vaccine delivery could be implemented elsewhere to increase vaccine uptake, and should be considered for delivery of COVID-19 vaccines in the future.


Subject(s)
COVID-19 , Pregnancy Complications, Infectious , COVID-19 Vaccines , Female , Humans , Patient Acceptance of Health Care , Pertussis Vaccine , Pregnancy , Pregnant Women , SARS-CoV-2 , Tertiary Care Centers , United Kingdom , Vaccination
4.
Cureus ; 13(8): e16899, 2021 Aug.
Article in English | MEDLINE | ID: covidwho-1374644

ABSTRACT

Background Fatality rate estimates for coronavirus disease 2019 (COVID-19) have varied widely. A major confounding factor in fatality rate estimates is the survival time (time from diagnosis to death). Predictive models that incorporate the survival time benefit from greater accuracy due to the elimination of sampling bias. This study outlines a survival time-based predictive model that estimates a precise fatality rate for patients with laboratory-confirmed COVID-19. This model was utilised to predict deaths for COVID-19 patients who died during the first wave of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection in England. Methodology This study included Public Health England (PHE) data for cumulative laboratory-confirmed COVID-19 cases (n = 143,463) and deaths (n = 30,028) that were reported by PHE between 30 January and 14 May 2020 in England, that is, from the first COVID-19 case in England and the most recently available data at the time of conducting this study. Fatality rate and survival time were estimated by linear regression analysis. This enabled the predicted cumulative COVID-19 deaths to be calculated up to 21 May 2020. Time periods with significantly different rates in daily deaths were identified using Joinpoint trend analysis. Results A fatality rate of 21.9% (95% confidence interval = 21.8% to 22.0%) with a survival time of seven days was determined for patients in England with laboratory-confirmed COVID-19 during the first wave of SARS-CoV-2 infection. Based on these estimates, predicted trends for cumulative and daily laboratory-confirmed COVID-19 deaths were generated with >99% and >96% accuracy with reported data, respectively. This model predicted that the number of cumulative laboratory-confirmed COVID-19 deaths in England was likely to be 31,420 by 21 May 2020. Joinpoint trend analysis identified significant differences in predicted daily laboratory-confirmed COVID-19 deaths during the following periods: 10.5 (6 to 17 March), 111.0 (17 to 27 March), 446.8 (27 March to 4 April), 817.0 (4 to 23 April), 536.3 (23 April to 7 May), and 266.7 (7 to 21 May) daily deaths (P < 0.001). Conclusions During the first wave of SARS-CoV-2 infection in England, the fatality rate of laboratory-confirmed COVID-19 was 21.9%. The survival time of these patients was seven days. The predictive model presented in this study can be adapted for estimating COVID-19 deaths in different geographical regions. As such, this study has utility for clinicians, scientists, and policymakers responding to new waves of SARS-CoV-2 infection because the methodology can be applied to more recent time periods as new data for COVID-19 cases and deaths become available.

5.
Lancet Reg Health Eur ; 3: 100075, 2021 Apr.
Article in English | MEDLINE | ID: covidwho-1144857

ABSTRACT

BACKGROUND: Paediatric Multisystem Inflammatory Syndrome temporally associated with SARS-CoV-2 (PIMS-TS), first identified in April 2020, shares features of both Kawasaki disease (KD) and toxic shock syndrome (TSS). The surveillance describes the epidemiology and clinical characteristics of PIMS-TS in the United Kingdom and Ireland. METHODS: Public Health England initiated prospective national surveillance of PIMS-TS through the British Paediatric Surveillance Unit. Paediatricians were contacted monthly to report PIMS-TS, KD and TSS cases electronically and complete a detailed clinical questionnaire. Cases with symptom onset between 01 March and 15 June 2020 were included. FINDINGS: There were 216 cases with features of PIMS-TS alone, 13 with features of both PIMS-TS and KD, 28 with features of PIMS-TS and TSS and 11 with features of PIMS-TS, KD and TSS, with differences in age, ethnicity, clinical presentation and disease severity between the phenotypic groups. There was a strong geographical and temporal association between SARS-CoV-2 infection rates and PIMS-TS cases. Of those tested, 14.8% (39/264) children had a positive SARS-CoV-2 RT-PCR, and 63.6% (75/118) were positive for SARS-CoV-2 antibodies. In total 44·0% (118/268) required intensive care, which was more common in cases with a TSS phenotype. Three of five children with cardiac arrest had TSS phenotype. Three children (1·1%) died. INTERPRETATION: The strong association between SARS-CoV-2 infection and PIMS-TS emphasises the importance of maintaining low community infection rates to reduce the risk of this rare but severe complication in children and adolescents. Close follow-up will be important to monitor long-term complications in children with PIMS-TS. FUNDING: PHE.

7.
Lancet Child Adolesc Health ; 5(2): 133-141, 2021 02.
Article in English | MEDLINE | ID: covidwho-779849

ABSTRACT

Paediatric inflammatory multisystem syndrome temporally associated with COVID-19 (PIMS-TS) is a novel condition that was first reported in April, 2020. We aimed to develop a national consensus management pathway for the UK to provide guidance for clinicians caring for children with PIMS-TS. A three-phase online Delphi process and virtual consensus meeting sought consensus over the investigation, management, and research priorities from multidisciplinary clinicians caring for children with PIMS-TS. We used 140 consensus statements to derive a consensus management pathway that describes the initial investigation of children with suspected PIMS-TS, including blood markers to help determine the severity of disease, an echocardiogram, and a viral and septic screen to exclude other infectious causes of illness. The importance of a multidisciplinary team in decision making for children with PIMS-TS is highlighted throughout the guidance, along with the recommended treatment options, including supportive care, intravenous immunoglobulin, methylprednisolone, and biological therapies. These include IL-1 antagonists (eg, anakinra), IL-6 receptor blockers (eg, tocilizumab), and anti-TNF agents (eg, infliximab) for children with Kawasaki disease-like phenotype and non-specific presentations. Use of a rapid online Delphi process has made it possible to generate a national consensus pathway in a timely and cost-efficient manner in the middle of a global pandemic. The consensus statements represent the views of UK clinicians and are applicable to children in the UK suspected of having PIMS-TS. Future evidence will inform updates to this guidance, which in the interim provides a solid framework to support clinicians caring for children with PIMS-TS. This process has directly informed new PIMS-TS specific treatment groups as part of the adaptive UK RECOVERY trial protocol, which is the first formal randomised controlled trial of therapies for PIMS-TS globally.


Subject(s)
COVID-19/epidemiology , Critical Pathways/standards , Disease Management , Systemic Inflammatory Response Syndrome , COVID-19/immunology , COVID-19/therapy , Child , Consensus , Humans , Interdisciplinary Communication , Systemic Inflammatory Response Syndrome/epidemiology , Systemic Inflammatory Response Syndrome/immunology , Systemic Inflammatory Response Syndrome/therapy , United Kingdom
8.
JAMA ; 324(3): 259-269, 2020 07 21.
Article in English | MEDLINE | ID: covidwho-574774

ABSTRACT

Importance: In communities with high rates of coronavirus disease 2019, reports have emerged of children with an unusual syndrome of fever and inflammation. Objectives: To describe the clinical and laboratory characteristics of hospitalized children who met criteria for the pediatric inflammatory multisystem syndrome temporally associated with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) (PIMS-TS) and compare these characteristics with other pediatric inflammatory disorders. Design, Setting, and Participants: Case series of 58 children from 8 hospitals in England admitted between March 23 and May 16, 2020, with persistent fever and laboratory evidence of inflammation meeting published definitions for PIMS-TS. The final date of follow-up was May 22, 2020. Clinical and laboratory characteristics were abstracted by medical record review, and were compared with clinical characteristics of patients with Kawasaki disease (KD) (n = 1132), KD shock syndrome (n = 45), and toxic shock syndrome (n = 37) who had been admitted to hospitals in Europe and the US from 2002 to 2019. Exposures: Signs and symptoms and laboratory and imaging findings of children who met definitional criteria for PIMS-TS from the UK, the US, and World Health Organization. Main Outcomes and Measures: Clinical, laboratory, and imaging characteristics of children meeting definitional criteria for PIMS-TS, and comparison with the characteristics of other pediatric inflammatory disorders. Results: Fifty-eight children (median age, 9 years [interquartile range {IQR}, 5.7-14]; 20 girls [34%]) were identified who met the criteria for PIMS-TS. Results from SARS-CoV-2 polymerase chain reaction tests were positive in 15 of 58 patients (26%) and SARS-CoV-2 IgG test results were positive in 40 of 46 (87%). In total, 45 of 58 patients (78%) had evidence of current or prior SARS-CoV-2 infection. All children presented with fever and nonspecific symptoms, including vomiting (26/58 [45%]), abdominal pain (31/58 [53%]), and diarrhea (30/58 [52%]). Rash was present in 30 of 58 (52%), and conjunctival injection in 26 of 58 (45%) cases. Laboratory evaluation was consistent with marked inflammation, for example, C-reactive protein (229 mg/L [IQR, 156-338], assessed in 58 of 58) and ferritin (610 µg/L [IQR, 359-1280], assessed in 53 of 58). Of the 58 children, 29 developed shock (with biochemical evidence of myocardial dysfunction) and required inotropic support and fluid resuscitation (including 23/29 [79%] who received mechanical ventilation); 13 met the American Heart Association definition of KD, and 23 had fever and inflammation without features of shock or KD. Eight patients (14%) developed coronary artery dilatation or aneurysm. Comparison of PIMS-TS with KD and with KD shock syndrome showed differences in clinical and laboratory features, including older age (median age, 9 years [IQR, 5.7-14] vs 2.7 years [IQR, 1.4-4.7] and 3.8 years [IQR, 0.2-18], respectively), and greater elevation of inflammatory markers such as C-reactive protein (median, 229 mg/L [IQR 156-338] vs 67 mg/L [IQR, 40-150 mg/L] and 193 mg/L [IQR, 83-237], respectively). Conclusions and Relevance: In this case series of hospitalized children who met criteria for PIMS-TS, there was a wide spectrum of presenting signs and symptoms and disease severity, ranging from fever and inflammation to myocardial injury, shock, and development of coronary artery aneurysms. The comparison with patients with KD and KD shock syndrome provides insights into this syndrome, and suggests this disorder differs from other pediatric inflammatory entities.


Subject(s)
Coronavirus Infections/complications , Pneumonia, Viral/complications , Symptom Assessment , Systemic Inflammatory Response Syndrome/diagnosis , Adolescent , Betacoronavirus , COVID-19 , Child , Child, Preschool , England , Female , Humans , Male , Mucocutaneous Lymph Node Syndrome/physiopathology , Pandemics , SARS-CoV-2 , Systemic Inflammatory Response Syndrome/physiopathology
SELECTION OF CITATIONS
SEARCH DETAIL