Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
EuropePMC; 2022.
Preprint in English | EuropePMC | ID: ppcovidwho-330333

ABSTRACT

Background Uncertainties remain about the benefit of a 3rd COVID-19 vaccine for people with attenuated response to earlier vaccines. This is of particular relevance for people with multiple sclerosis (pwMS) treated with anti-CD20 therapies and fingolimod, who have substantially reduced antibody responses to initial vaccine course. Methods PwMS taking part in a seroprevalence study without a detectable IgG response following COVID-19 vaccines 1&2 were invited to participate. Participants provided a dried blood spot +/-venous blood sample 2-12 weeks following COVID-19 vaccine 3. Humoral and T cell responses to SARS-CoV-2 spike protein and nucleocapsid antigen were measured. The relationship between evidence of prior COVID-19 infection and immune response to COVID-19 vaccine 3 was evaluated using Fishers exact test. Results Of 81 participants, 79 provided a dried blood spot sample, of whom 38 also provided a whole blood sample;2 provided only whole blood. Anti-SARS-CoV-2-spike IgG seroconversion post-COVID-19 vaccine 3 occurred in 26/79 (33%) participants;26/40 (65%) had positive T-cell responses. Overall, 31/40 (78%) demonstrated either humoral or cellular immune response post-COVID-19 vaccine 3. There no association between laboratory evidence of prior COVID-19 infection and anti-spike seroconversion following COVID-19 vaccine 3. Conclusions Approximately one third of pwMS who were seronegative after initial COVID-19 vaccination seroconverted after booster (third) vaccination, supporting the use of boosters in this group. Almost 8 out of 10 had a measurable immune response following 3rd COVID-19 vaccine. Key messages What is already known The benefits of COVID vaccination are well described. It is unknown whether there is additional benefit afforded from a third COVID-19 vaccination in those people who have failed to mount a serological response to their initial vaccine course. What this study adds Approximately one third of people with MS in our study, all of whom had failed to response to initial vaccine course, developed anti-spike antibodies following a third COVID-19 vaccine. Two-thirds of participants had T cell response to vaccination. No people taking fingolimod appeared to mount a T cell response to vaccination. How this study might influence practice These findings highlight potential benefits of booster vaccinations to a substantial proportion of immunosuppressed people who have failed to respond to initial vaccination course. The clinical correlates of antibody and T-cell responses to COVID-19 remain uncertain but they are almost certainly associated with milder subsequent disease in the general population.

2.
EuropePMC; 2020.
Preprint in English | EuropePMC | ID: ppcovidwho-305945

ABSTRACT

Background: Most biomedical research has focused on sampling COVID-19 patients presenting to hospital with advanced disease, with less focus on the asymptomatic or paucisymptomatic. We established a bioresource with serial sampling of health care workers (HCWs) designed to obtain samples before and during mainly mild disease, with follow-up sampling to evaluate the quality and duration of immune memory. Methods: : We conducted a prospective study on HCWs from three hospital sites in London, initially at a single centre (recruited just prior to first peak community transmission in London), but then extended to multiple sites 3 weeks later (recruitment still ongoing, target n=1,000). Asymptomatic participants attending work complete a health questionnaire, and provide a nasal swab (for SARS-CoV-2 RNA by RT-PCR tests) and blood samples (mononuclear cells, serum, plasma, RNA and DNA are biobanked) at 16 weekly study visits, and at 6 and 12 months. Results: : Preliminary baseline results for the first 731 HCWs (400 single-centre, 331 multicentre extension) are presented. Mean age was 38±11 years;67% are female, 31% nurses, 20% doctors, and 19% work in intensive care units. COVID-19-associated risk factors were: 37% black, Asian or minority ethnicities;18% smokers;13% obesity;11% asthma;7% hypertension and 2% diabetes mellitus. At baseline, 41% reported symptoms in the preceding 2 weeks. Preliminary test results from the initial cohort (n=400) are available: PCR at baseline for SARS-CoV-2 was positive in 28 of 396 (7.1%, 95% CI 4.9-10.0%) and 15 of 385 (3.9%, 2.4-6.3%) had circulating IgG antibodies. Conclusions: : This COVID-19 bioresource established just before the peak of infections in the UK will provide longitudinal assessments of incident infection and immune responses in HCWs through the natural time course of disease and convalescence. The samples and data from this bioresource are available to academic collaborators by application <ns3:ext-link xmlns:ns4="http://www.w3.org/1999/xlink" ext-link-type="uri" ns4:href="https://covid-consortium.com/application-for-samples/">https://covid-consortium.com/application-for-samples/</ns3:ext-link>.

3.
Ann Neurol ; 91(1): 89-100, 2022 01.
Article in English | MEDLINE | ID: covidwho-1479378

ABSTRACT

OBJECTIVE: The purpose of this study was to investigate the effect of disease modifying therapies on immune response to severe acute respiratory syndrome-coronavirus 2 (SARS-CoV-2) vaccines in people with multiple sclerosis (MS). METHODS: Four hundred seventy-three people with MS provided one or more dried blood spot samples. Information about coronavirus disease 2019 (COVID-19) and vaccine history, medical, and drug history were extracted from questionnaires and medical records. Dried blood spots were eluted and tested for antibodies to SARS-CoV-2. Antibody titers were partitioned into tertiles with people on no disease modifying therapy as a reference. We calculated the odds ratio of seroconversion (univariate logistic regression) and compared quantitative vaccine response (Kruskal Wallis) following the SARS-CoV-2 vaccine according to disease modifying therapy. We used regression modeling to explore the effect of vaccine timing, treatment duration, age, vaccine type, and lymphocyte count on vaccine response. RESULTS: Compared to no disease modifying therapy, the use of anti-CD20 monoclonal antibodies (odds ratio = 0.03, 95% confidence interval [CI] = 0.01-0.06, p < 0.001) and fingolimod (odds ratio = 0.04; 95% CI = 0.01-0.12) were associated with lower seroconversion following the SARS-CoV-2 vaccine. All other drugs did not differ significantly from the untreated cohort. Both time since last anti-CD20 treatment and total time on treatment were significantly associated with the response to the vaccination. The vaccine type significantly predicted seroconversion, but not in those on anti-CD20 medications. Preliminary data on cellular T-cell immunity showed 40% of seronegative subjects had measurable anti-SARS-CoV-2 T cell responses. INTERPRETATION: Some disease modifying therapies convey risk of attenuated serological response to SARS-CoV-2 vaccination in people with MS. We provide recommendations for the practical management of this patient group. ANN NEUROL 20219999:n/a-n/a.


Subject(s)
Antirheumatic Agents/therapeutic use , COVID-19 Vaccines/immunology , COVID-19/prevention & control , Immunocompromised Host , Multiple Sclerosis/immunology , Seroconversion/drug effects , Adult , Antibodies, Viral/blood , Antibodies, Viral/drug effects , Female , Humans , Male , Middle Aged , Multiple Sclerosis/drug therapy , SARS-CoV-2 , United Kingdom
4.
EBioMedicine ; 65: 103259, 2021 Mar.
Article in English | MEDLINE | ID: covidwho-1116568

ABSTRACT

BACKGROUND: SARS-CoV-2 serology is used to identify prior infection at individual and at population level. Extended longitudinal studies with multi-timepoint sampling to evaluate dynamic changes in antibody levels are required to identify the time horizon in which these applications of serology are valid, and to explore the longevity of protective humoral immunity. METHODS: Healthcare workers were recruited to a prospective cohort study from the first SARS-CoV-2 epidemic peak in London, undergoing weekly symptom screen, viral PCR and blood sampling over 16-21 weeks. Serological analysis (n =12,990) was performed using semi-quantitative Euroimmun IgG to viral spike S1 domain and Roche total antibody to viral nucleocapsid protein (NP) assays. Comparisons were made to pseudovirus neutralizing antibody measurements. FINDINGS: A total of 157/729 (21.5%) participants developed positive SARS-CoV-2 serology by one or other assay, of whom 31.0% were asymptomatic and there were no deaths. Peak Euroimmun anti-S1 and Roche anti-NP measurements correlated (r = 0.57, p<0.0001) but only anti-S1 measurements correlated with near-contemporary pseudovirus neutralising antibody titres (measured at 16-18 weeks, r = 0.57, p<0.0001). By 21 weeks' follow-up, 31/143 (21.7%) anti-S1 and 6/150 (4.0%) anti-NP measurements reverted to negative. Mathematical modelling revealed faster clearance of anti-S1 compared to anti-NP (median half-life of 2.5 weeks versus 4.0 weeks), earlier transition to lower levels of antibody production (median of 8 versus 13 weeks), and greater reductions in relative antibody production rate after the transition (median of 35% versus 50%). INTERPRETATION: Mild SARS-CoV-2 infection is associated with heterogeneous serological responses in Euroimmun anti-S1 and Roche anti-NP assays. Anti-S1 responses showed faster rates of clearance, more rapid transition from high to low level production rate and greater reduction in production rate after this transition. In mild infection, anti-S1 serology alone may underestimate incident infections. The mechanisms that underpin faster clearance and lower rates of sustained anti-S1 production may impact on the longevity of humoral immunity. FUNDING: Charitable donations via Barts Charity, Wellcome Trust, NIHR.


Subject(s)
Antibodies, Neutralizing/blood , Antibodies, Viral/blood , COVID-19/blood , Coronavirus Nucleocapsid Proteins/immunology , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/immunology , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , COVID-19/diagnosis , Health Personnel/statistics & numerical data , Humans , Immunoglobulin A/blood , Immunoglobulin G/blood , Phosphoproteins/immunology , Protein Domains/immunology
5.
Wellcome Open Res ; 5: 179, 2020.
Article in English | MEDLINE | ID: covidwho-1068028

ABSTRACT

Background: Most biomedical research has focused on sampling COVID-19 patients presenting to hospital with advanced disease, with less focus on the asymptomatic or paucisymptomatic. We established a bioresource with serial sampling of health care workers (HCWs) designed to obtain samples before and during mainly mild disease, with follow-up sampling to evaluate the quality and duration of immune memory. Methods: We conducted a prospective study on HCWs from three hospital sites in London, initially at a single centre (recruited just prior to first peak community transmission in London), but then extended to multiple sites 3 weeks later (recruitment still ongoing, target n=1,000). Asymptomatic participants attending work complete a health questionnaire, and provide a nasal swab (for SARS-CoV-2 RNA by RT-PCR tests) and blood samples (mononuclear cells, serum, plasma, RNA and DNA are biobanked) at 16 weekly study visits, and at 6 and 12 months. Results: Preliminary baseline results for the first 731 HCWs (400 single-centre, 331 multicentre extension) are presented. Mean age was 38±11 years; 67% are female, 31% nurses, 20% doctors, and 19% work in intensive care units. COVID-19-associated risk factors were: 37% black, Asian or minority ethnicities; 18% smokers; 13% obesity; 11% asthma; 7% hypertension and 2% diabetes mellitus. At baseline, 41% reported symptoms in the preceding 2 weeks. Preliminary test results from the initial cohort (n=400) are available: PCR at baseline for SARS-CoV-2 was positive in 28 of 396 (7.1%, 95% CI 4.9-10.0%) and 15 of 385 (3.9%, 2.4-6.3%) had circulating IgG antibodies. Conclusions: This COVID-19 bioresource established just before the peak of infections in the UK will provide longitudinal assessments of incident infection and immune responses in HCWs through the natural time course of disease and convalescence. The samples and data from this bioresource are available to academic collaborators by application  https://covid-consortium.com/application-for-samples/.

6.
Sci Immunol ; 5(54)2020 12 23.
Article in English | MEDLINE | ID: covidwho-999191

ABSTRACT

Understanding the nature of immunity following mild/asymptomatic infection with SARS-CoV-2 is crucial to controlling the pandemic. We analyzed T cell and neutralizing antibody responses in 136 healthcare workers (HCW) 16-18 weeks after United Kingdom lockdown, 76 of whom had mild/asymptomatic SARS-CoV-2 infection captured by serial sampling. Neutralizing antibodies (nAb) were present in 89% of previously infected HCW. T cell responses tended to be lower following asymptomatic infection than in those reporting case-definition symptoms of COVID-19, while nAb titers were maintained irrespective of symptoms. T cell and antibody responses were sometimes discordant. Eleven percent lacked nAb and had undetectable T cell responses to spike protein but had T cells reactive with other SARS-CoV-2 antigens. Our findings suggest that the majority of individuals with mild or asymptomatic SARS-CoV-2 infection carry nAb complemented by multispecific T cell responses at 16-18 weeks after mild or asymptomatic SARS-CoV-2 infection.


Subject(s)
Antibodies, Neutralizing/immunology , Asymptomatic Infections , COVID-19/immunology , T-Lymphocytes/immunology , Antibodies, Neutralizing/blood , Antibodies, Viral/blood , Antibodies, Viral/immunology , Case-Control Studies , Cross-Sectional Studies , Humans , SARS-CoV-2/immunology
7.
ProQuest Central; 2020.
Preprint in English | ProQuest Central | ID: ppcovidwho-2091

ABSTRACT

Background: Most biomedical research has focused on sampling COVID-19 patients presenting to hospital with advanced disease, with less focus on the asymptomatic or paucisymptomatic. We established a bioresource with serial sampling of health care workers (HCWs) designed to obtain samples before and during mainly mild disease, with follow-usampling to evaluate the quality and duration of immune memory. Methods: We conducted a prospective observational study on HCWs from three hospital sites in London, initially at a single centre (recruited just prior to first peak community transmission in London), but then extended to multiple sites 3 weeks later (recruitment still ongoing, target n=1,000). Asymptomatic participants attending work complete a health questionnaire, and provide a nasal swa(for SARS-CoV-2 RNA by RT-PCR tests) and blood samples (mononuclear cells, serum, plasma, RNA and DNA are biobanked) at 16 weekly study visits, and at 6 and 12 months. Results: Preliminary baseline results for the first 731 HCWs (400 single-centre, 331 multicentre extension) are presented. Mean age was 38±11 years;67% are female, 31% nurses, 20% doctors, and 19% work in intensive care units. COVID-19-associated risk factors were: 37% black, Asian or minority ethnicities;18% smokers;13% obesity;11% asthma;7% hypertension and 2% diabetes mellitus. At baseline, 41% reported symptoms in the preceding 2 weeks. Preliminary test results from the initial cohort (n=400) are available: PCR at baseline for SARS-CoV-2 was positive in 28 of 396 (7.1%, 95% C4.9-10.0%) and 15 of 385 (3.9%, 2.4-6.3%) had circulating IgG antibodies. Conclusions: This COVID-19 bioresource established just before the peak of infections in the UK will provide longitudinal assessments of incident infection and immune responses in HCWs through the natural time course of disease and convalescence. The samples and data from this bioresource are available to academic collaborators by application https://covid-consortium.com/application-for-samples/.

SELECTION OF CITATIONS
SEARCH DETAIL