Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
1.
J Korean Med Sci ; 37(18): e134, 2022 May 09.
Article in English | MEDLINE | ID: covidwho-1834344

ABSTRACT

BACKGROUND: Coronavirus disease 2019 (COVID-19) is often accompanied by secondary infections, such as invasive aspergillosis. In this study, risk factors for developing COVID-19-associated pulmonary aspergillosis (CAPA) and their clinical outcomes were evaluated. METHODS: This multicenter retrospective cohort study included critically ill COVID-19 patients from July 2020 through March 2021. Critically ill patients were defined as patients requiring high-flow respiratory support or mechanical ventilation. CAPA was defined based on the 2020 European Confederation of Medical Mycology and the International Society for Human and Animal Mycology consensus criteria. Factors associated with CAPA were analyzed, and their clinical outcomes were adjusted by a propensity score-matched model. RESULTS: Among 187 eligible patients, 17 (9.1%) developed CAPA, which is equal to 33.10 per 10,000 patient-days. Sixteen patients received voriconazole-based antifungal treatment. In addition, 82.4% and 53.5% of patients with CAPA and without CAPA, respectively, received early high-dose corticosteroids (P = 0.022). In multivariable analysis, initial 10-day cumulative steroid dose > 60 mg of dexamethasone or dexamethasone equivalent dose) (adjusted odds ratio [OR], 3.77; 95% confidence interval [CI], 1.03-13.79) and chronic pulmonary disease (adjusted OR, 4.20; 95% CI, 1.26-14.02) were independently associated with CAPA. Tendencies of higher 90-day overall mortality (54.3% vs. 35.2%, P = 0.346) and lower respiratory support-free rate were observed in patients with CAPA (76.3% vs. 54.9%, P = 0.089). CONCLUSION: Our study showed that the dose of corticosteroid use might be a risk factor for CAPA development and the possibility of CAPA contributing to adverse outcomes in critically ill COVID-19 patients.


Subject(s)
COVID-19 , Invasive Pulmonary Aspergillosis , Pulmonary Aspergillosis , Animals , COVID-19/complications , Critical Illness , Dexamethasone/therapeutic use , Humans , Invasive Pulmonary Aspergillosis/complications , Invasive Pulmonary Aspergillosis/diagnosis , Invasive Pulmonary Aspergillosis/drug therapy , Pulmonary Aspergillosis/complications , Retrospective Studies , Risk Factors , SARS-CoV-2
2.
Front Cell Infect Microbiol ; 12: 822599, 2022.
Article in English | MEDLINE | ID: covidwho-1822354

ABSTRACT

For the clinical application of semi-quantitative anti-SARS-CoV-2 antibody tests, the analytical performance and titer correlation of the plaque reduction neutralization test (PRNT) need to be investigated. We evaluated the analytical performance and PRNT titer-correlation of one surrogate virus neutralization test (sVNT) kit and three chemiluminescent assays. We measured the total antibodies for the receptor-binding domain (RBD) of the spike protein, total antibodies for the nucleocapsid protein (NP), and IgG antibodies for the RBD. All three chemiluminescent assays showed high analytical performance for the detection of SARS-CoV-2 infection, with a sensitivity ≥ 98% and specificity ≥ 99%; those of the sVNT were slightly lower. The representativeness of the neutralizing activity of PRNT ND50 ≥ 20 was comparable among the four immunoassays (Cohen's kappa ≈ 0.80). Quantitative titer correlation for high PRNT titers of ND50 ≥ 50, 200, and 1,000 was investigated with new cut-off values; the anti-RBD IgG antibody kit showed the best performance. It also showed the best linear correlation with PRNT titer in both the acute and convalescent phases (Pearson's R 0.81 and 0.72, respectively). Due to the slowly waning titer of anti-NP antibodies, the correlation with PRNT titer at the convalescent phase was poor. In conclusion, semi-quantitative immunoassay kits targeting the RBD showed neutralizing activity that was correlated by titer; measurement of anti-NP antibodies would be useful for determining past infections.


Subject(s)
COVID-19 , Antibodies, Viral , COVID-19/diagnosis , Humans , Immunoassay , Neutralization Tests , Nucleocapsid Proteins , SARS-CoV-2
3.
EuropePMC; 2020.
Preprint in English | EuropePMC | ID: ppcovidwho-320007

ABSTRACT

Memory T-cell responses have been demonstrated after recovery from SARS-CoV-2 infection, but the phenotypes of SARS-CoV-2-specific T cells have not been comprehensively investigated ex vivo. We detected SARS-CoV-2-specific CD8+ T cells by MHC-I multimer staining and examined their phenotypes in relation to their functional capacity in acute and convalescent COVID-19. In the convalescent phase, multimer+ cells exhibited early differentiated effector-memory phenotypes. The frequency of CD127+KLRG1- memory precursor effector cells among multimer+ cells was significantly lower in convalescent individuals with severe disease than those with mild disease. Cytokine-secretion assays combined with MHC-I multimer staining revealed that the proportion of IFN-γ-producing cells was significantly lower among SARS-CoV-2-specific CD8+ T cells than those specific to other viruses. Importantly, the proportion of IFN-γ-producing cells was significantly higher in PD-1+ cells than PD-1- cells among multimer+ cells in both the acute and convalescence phases, indicating that PD-1-expressing, SARS-CoV-2-specific CD8+ T cells are not exhausted, but functional. Our findings provide insights for effective vaccine development.

4.
Infect Chemother ; 53(2): 395-403, 2021 Jun.
Article in English | MEDLINE | ID: covidwho-1526888

ABSTRACT

Neutralizing antibodies targeted at the receptor-binding domain of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike protein have been developed and now under evaluation in clinical trials. The US Food and Drug Administration currently issued emergency use authorizations for neutralizing monoclonal antibodies in non-hospitalized patients with mild to moderate coronavirus disease 2019 (COVID-19) who are at high risk for progressing to severe disease and/or hospitalization. In terms of this situation, there is an urgent need to investigate the clinical aspects and to develop strategies to deploy them effectively in clinical practice. Here we provide guidance for the use of anti-SARS-CoV-2 monoclonal antibodies for the treatment of COVID-19 based on the latest evidence.

5.
J Clin Med ; 9(7)2020 Jul 17.
Article in English | MEDLINE | ID: covidwho-1403634

ABSTRACT

OBJECTIVES: To investigate antibody production in asymptomatic and mild COVID-19 patients. METHODS: Sera from asymptomatic to severe COVID-19 patients were collected. Microneutralization (MN), fluorescence immunoassay (FIA), and enzyme-linked immunosorbent assay (ELISA) were performed. RESULTS: A total of 70 laboratory-confirmed COVID-19 patients were evaluated, including 15 asymptomatic/anosmia, 49 mild symptomatic, and 6 pneumonia patients. The production of the neutralizing antibody was observed in 100% of pneumonia, 93.9% of mild symptomatic, and 80.0% of asymptomatic/anosmia groups. All the patients in the pneumonia group showed high MN titer (≥1:80), while 36.7% of mild symptomatic and 20.0% of asymptomatic/anosmia groups showed high titer (p < 0.001). Anti-SARS-CoV-2 antibodies could be more sensitively detected by FIA IgG (98.8%) and ELISA (97.6%) in overall. For the FIA IgG test, all patients in the pneumonia group exhibited a high COI value (≥15.0), while 89.8% of mild symptomatic and 73.3% of asymptomatic/anosmia groups showed a high value (p = 0.049). For the ELISA test, all patients in the pneumonia group showed a high optical density (OD) ratio (≥3.0), while 65.3% of mild symptomatic and 53.3% of asymptomatic/anosmia groups showed a high ratio (p = 0.006). CONCLUSIONS: Most asymptomatic and mild COVID-19 patients produced the neutralizing antibody, although the titers were lower than pneumonia patients. ELISA and FIA sensitively detected anti-SARS-CoV-2 antibodies.

6.
Infect Chemother ; 53(1): 166-219, 2021 Mar.
Article in English | MEDLINE | ID: covidwho-1365727

ABSTRACT

Despite the global effort to mitigate the spread, coronavirus disease 2019 (COVID-19) has become a pandemic that took more than 2 million lives. There are numerous ongoing clinical studies aiming to find treatment options and many are being published daily. Some effective treatment options, albeit of variable efficacy, have been discovered. Therefore, it is necessary to develop an evidence-based methodology, to continuously check for new evidence, and to update recommendations accordingly. Here we provide guidelines on pharmaceutical treatment for COVID-19 based on the latest evidence.

7.
Microorganisms ; 9(6)2021 Jun 07.
Article in English | MEDLINE | ID: covidwho-1259546

ABSTRACT

Patients with COVID-19 have been reported to experience gastrointestinal symptoms as well as respiratory symptoms, but the effects of COVID-19 on the gut microbiota are poorly understood. We explored gut microbiome profiles associated with the respiratory infection of SARS-CoV-2 during the recovery phase in patients with asymptomatic or mild COVID-19. A longitudinal analysis was performed using the same patients to determine whether the gut microbiota changed after recovery from COVID-19. We applied 16S rRNA amplicon sequencing to analyze two paired fecal samples from 12 patients with asymptomatic or mild COVID-19. Fecal samples were selected at two time points: during SARS-CoV-2 infection (infected state) and after negative conversion of the viral RNA (recovered state). We also compared the microbiome data with those from 36 healthy controls. Microbial evenness of the recovered state was significantly increased compared with the infected state. SARS-CoV-2 infection induced the depletion of Bacteroidetes, while an abundance was observed with a tendency to rapidly reverse in the recovered state. The Firmicutes/Bacteroidetes ratio in the infected state was markedly higher than that in the recovered state. Gut dysbiosis was observed after infection even in patients with asymptomatic or mild COVID-19, while the composition of the gut microbiota was recovered after negative conversion of SARS-CoV-2 RNA. Modifying intestinal microbes in response to COVID-19 might be a useful therapeutic alternative.

8.
J Microbiol Immunol Infect ; 54(5): 983-986, 2021 Oct.
Article in English | MEDLINE | ID: covidwho-1157512

ABSTRACT

In an investigation of six anti-SARS-CoV-2 antibody kits with different target antigen and methodology, each kit showed comparable performance. As false-positive reactions occurred independently with different kits, specificity increased to 100% when pairs of kits were used. With three-kit combination, both sensitivity (99.1%) and specificity (100%) increased.


Subject(s)
Antibodies, Viral/immunology , COVID-19 Serological Testing/methods , COVID-19/diagnosis , Reagent Kits, Diagnostic , SARS-CoV-2/isolation & purification , False Positive Reactions , Humans , Real-Time Polymerase Chain Reaction/methods , Sensitivity and Specificity
9.
J Korean Med Sci ; 36(11): e83, 2021 Mar 22.
Article in English | MEDLINE | ID: covidwho-1146214

ABSTRACT

BACKGROUND: Remdesivir is widely used for the treatment of coronavirus disease 2019 (COVID-19), but controversies regarding its efficacy still remain. METHODS: A retrospective cohort study was conducted to evaluate the effect of remdesivir on clinical and virologic outcomes of severe COVID-19 patients from June to July 2020. Primary clinical endpoints included clinical recovery, additional mechanical ventilator (MV) support, and duration of oxygen or MV support. Viral load reduction by hospital day (HD) 15 was evaluated by calculating changes in cycle threshold (Ct) values. RESULTS: A total of 86 severe COVID-19 patients were evaluated including 48 remdesivir-treated patients. Baseline characteristics were not significantly different between the two groups. Remdesivir was administered an average of 7.42 days from symptom onset. The proportions of clinical recovery of the remdesivir and supportive care group at HD 14 (56.3% and 39.5%) and HD 28 (87.5% and 78.9%) were not statistically different. The proportion of patients requiring MV support by HD 28 was significantly lower in the remdesivir group than in the supportive care group (22.9% vs. 44.7%, P = 0.032), and MV duration was significantly shorter in the remdesivir group (average, 1.97 vs. 5.37 days; P = 0.017). Analysis of upper respiratory tract specimens demonstrated that increases of Ct value from HD 1-5 to 11-15 were significantly greater in the remdesivir group than the supportive care group (average, 10.19 vs. 5.36; P = 0.007), and the slope of the Ct value increase was also significantly steeper in the remdesivir group (average, 5.10 vs. 2.68; P = 0.007). CONCLUSION: The remdesivir group showed clinical and virologic benefit in terms of MV requirement and viral load reduction, supporting remdesivir treatment for severe COVID-19.


Subject(s)
Adenosine Monophosphate/analogs & derivatives , Alanine/analogs & derivatives , Antiviral Agents/therapeutic use , COVID-19/drug therapy , SARS-CoV-2 , Adenosine Monophosphate/therapeutic use , Aged , Aged, 80 and over , Alanine/therapeutic use , COVID-19/virology , Female , Humans , Male , Middle Aged , Real-Time Polymerase Chain Reaction , Respiration, Artificial , Retrospective Studies , Viral Load
10.
Immunity ; 54(1): 44-52.e3, 2021 01 12.
Article in English | MEDLINE | ID: covidwho-1065202

ABSTRACT

Memory T cell responses have been demonstrated in COVID-19 convalescents, but ex vivo phenotypes of SARS-CoV-2-specific T cells have been unclear. We detected SARS-CoV-2-specific CD8+ T cells by MHC class I multimer staining and examined their phenotypes and functions in acute and convalescent COVID-19. Multimer+ cells exhibited early differentiated effector-memory phenotypes in the early convalescent phase. The frequency of stem-like memory cells was increased among multimer+ cells in the late convalescent phase. Cytokine secretion assays combined with MHC class I multimer staining revealed that the proportion of interferon-γ (IFN-γ)-producing cells was significantly lower among SARS-CoV-2-specific CD8+ T cells than those specific to influenza A virus. Importantly, the proportion of IFN-γ-producing cells was higher in PD-1+ cells than PD-1- cells among multimer+ cells, indicating that PD-1-expressing, SARS-CoV-2-specific CD8+ T cells are not exhausted, but functional. Our current findings provide information for understanding of SARS-CoV-2-specific CD8+ T cells elicited by infection or vaccination.


Subject(s)
CD8-Positive T-Lymphocytes/immunology , COVID-19/immunology , Programmed Cell Death 1 Receptor/metabolism , SARS-CoV-2/immunology , Acute-Phase Reaction/immunology , Acute-Phase Reaction/virology , COVID-19/pathology , COVID-19/virology , Convalescence , Epitopes, T-Lymphocyte , Histocompatibility Antigens Class I/immunology , Humans , Immunologic Memory , Immunophenotyping , Interferon-gamma/metabolism , Lymphocyte Activation , Viral Load
11.
Immunity ; 54(1): 44-52.e3, 2021 01 12.
Article in English | MEDLINE | ID: covidwho-988082

ABSTRACT

Memory T cell responses have been demonstrated in COVID-19 convalescents, but ex vivo phenotypes of SARS-CoV-2-specific T cells have been unclear. We detected SARS-CoV-2-specific CD8+ T cells by MHC class I multimer staining and examined their phenotypes and functions in acute and convalescent COVID-19. Multimer+ cells exhibited early differentiated effector-memory phenotypes in the early convalescent phase. The frequency of stem-like memory cells was increased among multimer+ cells in the late convalescent phase. Cytokine secretion assays combined with MHC class I multimer staining revealed that the proportion of interferon-γ (IFN-γ)-producing cells was significantly lower among SARS-CoV-2-specific CD8+ T cells than those specific to influenza A virus. Importantly, the proportion of IFN-γ-producing cells was higher in PD-1+ cells than PD-1- cells among multimer+ cells, indicating that PD-1-expressing, SARS-CoV-2-specific CD8+ T cells are not exhausted, but functional. Our current findings provide information for understanding of SARS-CoV-2-specific CD8+ T cells elicited by infection or vaccination.


Subject(s)
CD8-Positive T-Lymphocytes/immunology , COVID-19/immunology , Programmed Cell Death 1 Receptor/metabolism , SARS-CoV-2/immunology , Acute-Phase Reaction/immunology , Acute-Phase Reaction/virology , COVID-19/pathology , COVID-19/virology , Convalescence , Epitopes, T-Lymphocyte , Histocompatibility Antigens Class I/immunology , Humans , Immunologic Memory , Immunophenotyping , Interferon-gamma/metabolism , Lymphocyte Activation , Viral Load
12.
Infect Chemother ; 52(2): 281-304, 2020 Jun.
Article in English | MEDLINE | ID: covidwho-918283

ABSTRACT

Since the first case was reported in Wuhan, Hubei Province, China on December 12, 2019, Coronavirus disease 2019 (COVID-19) has spread widely to other countries since January 2020. As of April 16, 2020, 10635 confirmed cases have been reported, with 230 deaths in Korea. COVID-19 patients may be asymptomatic or show various clinical manifestations, including acute symptoms such as fever, fatigue, sore throat; pneumonia presenting as acute respiratory distress syndrome; and multiple organ failure. As COVID-19 has such varied clinical manifestations and case fatality rates, no standard antiviral therapy regimen has been established other than supportive therapy. In the present guideline, we aim to introduce potentially helpful antiviral and other drug therapies based on in vivo and in vitro research and clinical experiences from many countries.

13.
Journal of Clinical Medicine ; 9(7):2268, 2020.
Article | WHO COVID | ID: covidwho-653284

ABSTRACT

Objectives: To investigate antibody production in asymptomatic and mild COVID-19 patients. Methods: Sera from asymptomatic to severe COVID-19 patients were collected. Microneutralization (MN), fluorescence immunoassay (FIA), and enzyme-linked immunosorbent assay (ELISA) were performed. Results: A total of 70 laboratory-confirmed COVID-19 patients were evaluated, including 15 asymptomatic/anosmia, 49 mild symptomatic, and 6 pneumonia patients. The production of the neutralizing antibody was observed in 100% of pneumonia, 93.9% of mild symptomatic, and 80.0% of asymptomatic/anosmia groups. All the patients in the pneumonia group showed high MN titer (≥1:80), while 36.7% of mild symptomatic and 20.0% of asymptomatic/anosmia groups showed high titer (p <0.001). Anti-SARS-CoV-2 antibodies could be more sensitively detected by FIA IgG (98.8%) and ELISA (97.6%) in overall. For the FIA IgG test, all patients in the pneumonia group exhibited a high COI value (≥15.0), while 89.8% of mild symptomatic and 73.3% of asymptomatic/anosmia groups showed a high value (p = 0.049). For the ELISA test, all patients in the pneumonia group showed a high optical density (OD) ratio (≥3.0), while 65.3% of mild symptomatic and 53.3% of asymptomatic/anosmia groups showed a high ratio (p = 0.006). Conclusions: Most asymptomatic and mild COVID-19 patients produced the neutralizing antibody, although the titers were lower than pneumonia patients. ELISA and FIA sensitively detected anti-SARS-CoV-2 antibodies.

14.
J Microbiol Immunol Infect ; 54(1): 97-100, 2021 Feb.
Article in English | MEDLINE | ID: covidwho-641889

ABSTRACT

Clinical applicability of rapid diagnostic test kit for SARS-CoV-2 antibodies was evaluated. The kit detected antibodies from day 9-56 of illness. IgG bands were observed up to 1: 1000 dilutions. The kit could detect 90.5% of IgG and 61.9% of IgM antibodies of mild febrile patients without pneumonia.


Subject(s)
Antibodies, Viral/immunology , COVID-19 Testing/methods , COVID-19/diagnosis , COVID-19/virology , Point-of-Care Testing , Reagent Kits, Diagnostic , SARS-CoV-2/immunology , Adult , COVID-19/immunology , Female , Humans , Immunoglobulin G/immunology , Immunoglobulin M/immunology , Male , Patient Care , SARS-CoV-2/isolation & purification , Sensitivity and Specificity
15.
Clin Gastroenterol Hepatol ; 19(7): 1387-1394.e2, 2021 Jul.
Article in English | MEDLINE | ID: covidwho-592299

ABSTRACT

BACKGROUND & AIMS: Although coronavirus disease 2019 (COVID-19) is characterized by fever and respiratory symptoms, some patients have no or mild symptoms. Severe acute respiratory syndrome-coronavirus (SARS-CoV-2) has been detected in feces of patients. We investigated gastrointestinal symptoms and shedding of virus into feces of patients with asymptomatic or mild COVID-19. METHODS: We collected data from 46 patients (median age, 26 y; 46% men) with asymptomatic or mild COVID-19 (without fever and pneumonia) and prolonged respiratory shedding of SARS-CoV-2, quarantined from April 4, 2020, through April 24, 2020, in Korea. Respiratory specimens included upper respiratory specimens (nasopharyngeal and oropharyngeal swabs) and lower respiratory specimens (sputum), and were collected twice per week. The median interval between COVID-19 diagnosis to the start of fecal sample collection was 37 days (range, 29-41 d); 213 stool specimens were collected from 46 patients. We used real-time reverse-transcription polymerase chain reaction to detect SARS-CoV-2 in the respiratory and fecal specimens. RESULTS: Gastrointestinal manifestations were observed in 16 of the 46 patients (35%); diarrhea was the most common (15%), followed by abdominal pain (11%), dyspepsia (11%), and nausea (2%). Virus RNA was detected in feces from 2 patients without gastrointestinal symptoms (4%). Mean cycle threshold values from the time of quarantine to the time of fecal collection tended to be lower in patients with virus detected in fecal samples than in patients without virus in fecal samples (29.91 vs 33.67 in the first week, 29.47 vs 35.71 in the fifth week, respectively). Shedding of virus into feces persisted until day 50 after diagnosis; fecal samples began to test negative before or at approximately the time that respiratory specimens also began to test negative. CONCLUSIONS: In an analysis of fecal and respiratory specimens from patients with COVID-19 in quarantine in Korea, we found that the gastrointestinal tract could be a route of transmission of SARS-CoV-2 even in patients with asymptomatic or mild disease, with no gastrointestinal symptoms. The viral load of the respiratory specimens appears be related to shedding of the virus into feces in this group of patients.


Subject(s)
COVID-19 , Feces/virology , SARS-CoV-2 , Adult , Asymptomatic Infections , COVID-19/diagnosis , COVID-19 Testing , Female , Humans , Male , RNA, Viral , Republic of Korea , SARS-CoV-2/isolation & purification , Virus Shedding
SELECTION OF CITATIONS
SEARCH DETAIL