Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add filters

Language
Document Type
Year range
1.
medrxiv; 2023.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2023.01.10.22284009

ABSTRACT

Background: In view of the emergence of SARS-CoV-2 immune escape variants and evidence of waning immunity, new immunisation strategies and variant-adapted vaccines are needed. Based on preclinical proof of concept studies and requirement of variant-adapted and booster vaccines, the Gamma Variant RBD-based ARVAC-CG vaccine was selected for a first clinical trial in humans. Methods Eighty participants (healthy adults, 18-55 years-old) were sequentially assigned to receive two (28 days apart) intramuscular doses of 25-lower case Greek mug (n=60) or 50-lower case Greek mug (n=20) of a Gamma RBD-based subunit vaccine adjuvanted with aluminium hydroxide. The primary endpoint was safety. The secondary objective was to describe the neutralising antibody response against the SARS-CoV-2 Ancestral strain and several variants of concern (Gamma, Delta, Omicron BA.1 and Omicron BA.5) measured by a live virus-based neutralisation assay. Cellular immune responses were studied as an exploratory objective by an enzyme-linked immunospot (ELISpot) assay. This trial is registered in ClinicalTrials.gov ( NCT05656508 ). Findings The interim results from the ongoing phase 1 study are described. ARVAC-CG exhibited a satisfactory safety profile, a robust and broad booster response of neutralising antibodies against the Ancestral strain of SARS-CoV-2, the Gamma variant, and other VOCs (Delta, Omicron BA.1 and Omicron BA.5) and a booster effect on T cell immunity. Interpretation ARVAC-CG is safe and highly immunogenic when used as booster in individuals previously immunised with different COVID-19 vaccine platforms. These results warrant further clinical evaluation of this vaccine candidate for boosting other COVID-19 vaccines.


Subject(s)
COVID-19
2.
biorxiv; 2022.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2022.03.15.484542

ABSTRACT

The SARS-CoV-2 Omicron variant of concern comprises three sublineages designated BA.1, BA.2, and BA.3, with BA.2 steadily replacing the globally dominant BA.1. We show that the large number of BA.1 and BA.2 spike mutations severely dampen plasma neutralizing activity elicited by infection or seven clinical vaccines, with cross-neutralization of BA.2 being consistently more potent than that of BA.1, independent of the vaccine platform and number of doses. Although mRNA vaccines induced the greatest magnitude of Omicron BA.1 and BA.2 plasma neutralizing activity, administration of a booster based on the Wuhan-Hu-1 spike sequence markedly increased neutralizing antibody titers and breadth against BA.1 and BA.2 across all vaccines evaluated. Our data suggest that although BA.1 and BA.2 evade polyclonal neutralizing antibody responses, current vaccine boosting regimens may provide sufficient protection against Omicron-induced disease.

3.
biorxiv; 2021.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2021.12.19.473391

ABSTRACT

Numerous safe and effective COVID-19 vaccines have been developed that utilize various delivery technologies and engineering strategies. The influence of the SARS-CoV-2 spike (S) glycoprotein conformation on antibody responses induced by vaccination or infection in humans remains unknown. To address this question, we compared plasma antibodies elicited by six globally-distributed vaccines or infection and observed markedly higher binding titers for vaccines encoding a prefusion-stabilized S relative to other groups. Prefusion S binding titers positively correlated with plasma neutralizing activity, indicating that physical stabilization of the prefusion conformation enhances protection against SARS-CoV-2. We show that almost all plasma neutralizing activity is directed to prefusion S, in particular the S1 subunit, and that variant cross-neutralization is mediated solely by RBD-specific antibodies. Our data provide a quantitative framework for guiding future S engineering efforts to develop vaccines with higher resilience to the emergence of variants and longer durability than current technologies.


Subject(s)
COVID-19 , Severe Acute Respiratory Syndrome
4.
biorxiv; 2021.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2021.12.12.472269

ABSTRACT

The recently emerged SARS-CoV-2 Omicron variant harbors 37 amino acid substitutions in the spike (S) protein, 15 of which are in the receptor-binding domain (RBD), thereby raising concerns about the effectiveness of available vaccines and antibody therapeutics. Here, we show that the Omicron RBD binds to human ACE2 with enhanced affinity relative to the Wuhan-Hu-1 RBD and acquires binding to mouse ACE2. Severe reductions of plasma neutralizing activity were observed against Omicron compared to the ancestral pseudovirus for vaccinated and convalescent individuals. Most (26 out of 29) receptor-binding motif (RBM)-directed monoclonal antibodies (mAbs) lost in vitro neutralizing activity against Omicron, with only three mAbs, including the ACE2-mimicking S2K146 mAb, retaining unaltered potency. Furthermore, a fraction of broadly neutralizing sarbecovirus mAbs recognizing antigenic sites outside the RBM, including sotrovimab, S2X259 and S2H97, neutralized Omicron. The magnitude of Omicron-mediated immune evasion and the acquisition of binding to mouse ACE2 mark a major SARS-CoV-2 mutational shift. Broadly neutralizing sarbecovirus mAbs recognizing epitopes conserved among SARS-CoV-2 variants and other sarbecoviruses may prove key to controlling the ongoing pandemic and future zoonotic spillovers.

5.
medrxiv; 2021.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2021.08.22.21262186

ABSTRACT

Recent studies have shown a temporal increase in the neutralizing antibody potency and breadth to SARS-CoV-2 variants in coronavirus disease 2019 (COVID-19) convalescent individuals. Here, we observed a similar process after Sputnik V vaccination. We examined the longitudinal antibody responses and viral neutralizing capacity to variants of concern (VOCs: Alpha, Beta, Gamma, and Delta) and a broadly spread variant of interest (VOI: Lambda) in volunteers up to 6 months after receiving the Sputnik V vaccine in Argentina. A collection of 1,800 serum samples obtained between January and August 2021 was used. The analysis indicates that while anti-spike IgG levels significantly wane over time, the neutralizing potency to the first-wave linages of SARS-CoV-2 and VOC increases within four months of vaccination, suggesting that antibody maturation occurs. This increase was more evident for the Beta and Gamma variants, which showed the highest propensity for neutralization escape. Our observations suggest that protection increases over the six months following vaccination as a consequence of antibody maturation, resulting in improved potency of antibodies to viral escape mutations.


Subject(s)
Severe Acute Respiratory Syndrome , COVID-19
6.
ssrn; 2021.
Preprint in English | PREPRINT-SSRN | ID: ppzbmed-10.2139.ssrn.3857602

ABSTRACT

Background: Most children and youth develop mild or asymptomatic disease during severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. However, a very small number of patients suffer severe Coronavirus induced disease 2019 (COVID-19). The reasons underlying these different outcomes remain unknown.Methods: We analyzed three different cohorts: children with acute infection (n=550), convalescent children (n=138), and MIS-C (multisystem inflammatory syndrome in children, n=42). IgG and IgM antibodies to the spike protein of SARS-CoV-2, serum-neutralizing activity, plasma cytokine levels, and the frequency of circulating Follicular T helper cells (cTfh) and plasmablasts were analyzed by conventional methods.Findings: Fifty-eight percent of the children in the acute phase of infection had no detectable antibodies at the time of sampling while a seronegative status was found in 25% and 12% of convalescent and MIS-C children, respectively. When children in the acute phase of the infection were stratified according disease severity, we found that contrasting with the response of children with asymptomatic, mild and moderate disease, children with severe COVID-19 did not develop any detectable response. A defective antibody response was also observed in the convalescent cohort for children with severe disease at the time of admission. This poor antibody response was associated to both, a low frequency of cTfh and a high plasma concentration of inflammatory cytokines.Interpretation: A weak and delayed kinetic of antibody response to SARS-CoV-2 together with a systemic pro-inflammatory profile characterize to pediatric severe COVID-19.Funding Information: National Agency for Scientific and Technological Promotion from Argentina (IP-COVID-19-0277 and PMO-BID-PICT2018-2548).Declaration of Interests: The authors have declared that no conflict of interest exists.Ethics Approval Statement: This study was conducted in accordance with the Declaration of Helsinki. The Institutional Review Board at institutions participants reviewed and approved the sample collection and the overall study (Hospital General de Niños Pedro de Elizalde protocol reference 1226/20, Hospital Universitario Austral protocol reference 2147/2020 and Hospital General de Agudos Dr. J. A Fernández protocol reference 1720/20). Parents or legal guardians from children under 8 years provided written, informed consent. Children older than 8 years old provided written, informed assent and their parents or legal guardians also provided written, informed consent.


Subject(s)
COVID-19 , Cryopyrin-Associated Periodic Syndromes , Coronavirus Infections
7.
ssrn; 2021.
Preprint in English | PREPRINT-SSRN | ID: ppzbmed-10.2139.ssrn.3774818

ABSTRACT

Background: Perhaps reflecting that children with COVID-19 rarely exhibit severe respiratory symptoms and often remain asymptomatic, little attention has been paid to explore the immune response in pediatric COVID-19. Here, we analyzed the phenotype and function of circulating neutrophils from children with COVID-19.Methods: One seventy-four children with COVID-19, 21 children with multisystem inflammatory syndrome (MIS-C), and 40 healthy children were studied. Neutrophil phenotype was analyzed by flow cytometry in blood samples. Cytokine production and plasma levels of IgG antibodies directed to the spike protein of SARS-CoV-2 were measured by ELISA. Cell-free DNA was quantified by fluorometry.Findings: Compared with healthy controls, neutrophils from children with COVID-19 showed a lower expression of CD11b, CD66b, and L-selectin but a higher expression of the activation markers HLA-DR, CD64 and PECAM-1 and the inhibitory receptors LAIR-1 and PD-L1. No differences in the pattern of cytokine production and NETs were observed when neutrophils from healthy children were compared with neutrophils from children with COVID-19. Interestingly, the expression of CD64 not only distinguished asymptomatic from mild and moderate COVID-19, but also positively correlated with the serum concentration of IgG antibodies directed to the spike protein of SARS-CoV-2.Interpretation: Acute lung injury is a prominent feature of severe COVID-19 in adults. A low expression of adhesion molecules together with a high expression of inhibitory receptors in neutrophils from children with COVID-19 might prevent tissue infiltration by neutrophils preserving lung function.Funding: FONCyT- ANPCyT, UBA, Argentina.Declaration of Interests: The authors have declared that no conflict of interest exists.Ethics Approval Statement: The Institutional Review Board at institutions participants reviewed and approved the sample collection and overall study.


Subject(s)
COVID-19 , Cryopyrin-Associated Periodic Syndromes , Acute Lung Injury
8.
Romina Libster; Gonzalo Perez Marc; Diego Wappner; Silvina Coviello; Alejandra Bianchi; Virginia Braem; Ignacio Esteban; Mauricio Tomas Caballero; Cristian J Wood; Mabel Berrueta; Anibal Rondan; Gabriela Lescano; Pablo Cruz; Ivonne Ritou; Valeria Fernandez Vina; Damian Alvarez Paggi; Sebastian Esperante; Adrian Ferretti; Gaston Ofman; Alvaro Ciganda; Rocio Rodriguez; Jorge Lantos; Ricardo Valentini; Nicolas Itcovici; Alejandra Hintze; Laura Oyarvide; Candela Etchegaray; Alejandra Neira; Ivonne Name; Julieta Alfonso; Rocio Lopez Castelo; Gisela Caruso; Sofia Rapelius; Fernando Alvez; Federico Cesar Etchenique; Federico Dimase; Dario Raul Alvarez; Sofia Sol Aranda; Clara Sanchez Yanotti; Julian DeLuca; Sofia Jarez Baglivo; Sofia Lujan Laudanno; Florencia Nowogrodzki; Florencia Izetta; Maria Teresa Paniguetti; Paula Fernandez Estrella; Maria Emilia Gutierrez Meyer; Viviana Dominguez; Marcela Balduzzi; Romina Militerno; Jimena Ochoa; Sebastian Perez Marc; Lucila DiNunzio; Mariano Aizpurua; Romina Zadoff; Carla Marchionatti; Natalia Garcia Escude; Romina Romero; Noelia Iraizos; Emmanuel Ezequiel Valls; Patricia Rearte Carvalho; Jimena Franco; Natali Estrada; Juan Rusconi; Guido Ochoa; Maria Veronica Paz; Patricia Lesch; Maria Fernanda Caracciolo; Maria Eugenia Macaneo; Lia Pocket; Silvana Marquez; Gaston Pellegrino; Jorge Geffner; Rocio Zarlenga; Camila Witteveen; Agustina Venditti; Indira Pichetto Olanda; Juan Mauricio Vargas; Micaela Piani; Daniela Carolina Galnarez; Florencia De la Fuente; Andrea Gamarnik; Maria del Carmen Nigro; Susana Villaroel; Cristina Soler Riera; Leonel Langellotti; Clarisa Taffarel; Jose L Scapellato; Mariano Girasolli; Maximiliano de Zan; Juan Sebastian Riera; Enio Garcia; Mario Rovere; Juan Canela; Agostina Pagella; Cecilia Pampuro; Yanina Miragaya; Silvina Kuperman; Alfonso Raggio; Ramiro Manuel Larrea; Maria Dolores Silveyra; Gabriela Leberzstein; Alejandra Debonis; Juan Molinos; Miguel Gonzalez; Eduardo Perez; Nicolas Kreplak; Susana Pastor Arguello; Luz Gibbons; Fernando Althabe; Eduardo Bergel; Fernando P Polack.
medrxiv; 2020.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2020.11.20.20234013

ABSTRACT

BackgroundTherapies to interrupt progression of early COVID-19 remain elusive. Among them, convalescent plasma in hospitalized patients was unsuccessful, perhaps because antibody should be administered earlier. We advanced plasma infusions to the first 72 hours of symptoms to arrest COVID-19 progression. MethodsA randomized, double-blind, placebo-controlled trial of convalescent plasma with high IgG titers against SARS-CoV2 in elderly subjects within 72 hours of mild COVID-19 symptoms. The primary endpoint was severe respiratory disease defined as a respiratory rate [≥]30 and/or an O2 sat<93% in room air. The study was interrupted at 76% of its projected sample size, because cases in the region decreased considerably and steady enrollment of study subjects became virtually impossible. Results160 patients underwent randomization. In the intention-to-treat analysis (ITT), 13/80(16.2%) patients receiving plasma vs. 25/80(31.2%) receiving placebo experienced severe respiratory disease [RR(95%CI)= 0.52(0.29,0.94); p=0.026)] with an RRR=48%. A modified ITT analysis, excluding six subjects who experienced the primary endpoint before infusion, showed a larger effect size [RR(95%CI) = 0.40(0.20, 0.81), p=0.007]. High- and low-titer donor analyses, based on a median IgG titer=1:3,200, evidenced a dose-dependent response with an RRR=73.3% for recipients of high-titer plasma (p=0.016) and a number needed to treat (NNT)=4.4. All secondary endpoints exhibited trends towards protection. No solicited adverse events were observed. ConclusionsEarly administration of high-titer convalescent plasma against SARS-CoV2 to mildly ill infected seniors reduced COVID-19 progression. This safe, inexpensive, outpatient intervention facilitates access to treatment from industrialized to LMIC, can decompress demands on hospitals, and may contribute to save lives. Funded by The Bill & Melinda Gates Foundation and The Fundacion INFANT Pandemic Fund. Registered in the Direccion de Sangre y Medicina Transfusional del Ministerio de Salud (PAEPCC19), Plataforma PRIISA (1421), and clinicaltrials.gov (NCT04479163). All authors have completed the ICMJE uniform disclosure form at www.icmje.org/coi_disclosure.pdf and declare: no support from any organization for the submitted work; RL, GPM, DW and FPP are investigators in a phase 3 SARS CoV2 trial from Pfizer; no other relationships or activities that could appear to have influenced the submitted work.


Subject(s)
COVID-19
9.
Rebecca L. Laws; Prabasaj Paul; Emily Mosites; Heather Scobie; Kristie E. N. Clarke; Rachel B. Slayton; Ignacio Esteban; Mauricio Tomas Caballero; Cristian J Wood; Mabel Berrueta; Anibal Rondan; Gabriela Lescano; Pablo Cruz; Ivonne Ritou; Valeria Fernandez Vina; Damian Alvarez Paggi; Sebastian Esperante; Adrian Ferretti; Gaston Ofman; Alvaro Ciganda; Rocio Rodriguez; Jorge Lantos; Ricardo Valentini; Nicolas Itcovici; Alejandra Hintze; Laura Oyarvide; Candela Etchegaray; Alejandra Neira; Ivonne Name; Julieta Alfonso; Rocio Lopez Castelo; Gisela Caruso; Sofia Rapelius; Fernando Alvez; Federico Cesar Etchenique; Federico Dimase; Dario Raul Alvarez; Sofia Sol Aranda; Clara Sanchez Yanotti; Julian DeLuca; Sofia Jarez Baglivo; Sofia Lujan Laudanno; Florencia Nowogrodzki; Florencia Izetta; Maria Teresa Paniguetti; Paula Fernandez Estrella; Maria Emilia Gutierrez Meyer; Viviana Dominguez; Marcela Balduzzi; Romina Militerno; Jimena Ochoa; Sebastian Perez Marc; Lucila DiNunzio; Mariano Aizpurua; Romina Zadoff; Carla Marchionatti; Natalia Garcia Escude; Romina Romero; Noelia Iraizos; Emmanuel Ezequiel Valls; Patricia Rearte Carvalho; Jimena Franco; Natali Estrada; Juan Rusconi; Guido Ochoa; Maria Veronica Paz; Patricia Lesch; Maria Fernanda Caracciolo; Maria Eugenia Macaneo; Lia Pocket; Silvana Marquez; Gaston Pellegrino; Jorge Geffner; Rocio Zarlenga; Camila Witteveen; Agustina Venditti; Indira Pichetto Olanda; Juan Mauricio Vargas; Micaela Piani; Daniela Carolina Galnarez; Florencia De la Fuente; Andrea Gamarnik; Maria del Carmen Nigro; Susana Villaroel; Cristina Soler Riera; Leonel Langellotti; Clarisa Taffarel; Jose L Scapellato; Mariano Girasolli; Maximiliano de Zan; Juan Sebastian Riera; Enio Garcia; Mario Rovere; Juan Canela; Agostina Pagella; Cecilia Pampuro; Yanina Miragaya; Silvina Kuperman; Alfonso Raggio; Ramiro Manuel Larrea; Maria Dolores Silveyra; Gabriela Leberzstein; Alejandra Debonis; Juan Molinos; Miguel Gonzalez; Eduardo Perez; Nicolas Kreplak; Susana Pastor Arguello; Luz Gibbons; Fernando Althabe; Eduardo Bergel; Fernando P Polack.
biorxiv; 2020.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2020.11.20.391011

ABSTRACT

BackgroundCongregate settings are at risk for coronavirus disease 2019 (COVID-19) outbreaks. Diagnostic testing can be used as a tool in these settings to identify outbreaks and to control transmission. MethodsWe used transmission modeling to estimate the minimum number of persons to test and the optimal frequency to detect small outbreaks of COVID-19 in a congregate facility. We also estimated the frequency of testing needed to interrupt transmission within a facility. ResultsThe number of people to test and frequency of testing needed depended on turnaround time, facility size, and test characteristics. Parameters are calculated for a variety of scenarios. In a facility of 100 people, 26 randomly selected individuals would need to be tested at least every 6 days to identify a true underlying prevalence of at least 5%, with test sensitivity of 85%, and greater than 95% outbreak detection sensitivity. Disease transmission could be interrupted with universal, facility-wide testing with rapid turnaround every three days. ConclusionsTesting a subset of individuals in congregate settings can improve early detection of small outbreaks of COVID-19. Frequent universal diagnostic testing can be used to interrupt transmission within a facility, but its efficacy is reliant on rapid turnaround of results for isolation of infected individuals.


Subject(s)
COVID-19
SELECTION OF CITATIONS
SEARCH DETAIL