Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Add filters

Document Type
Year range
Stat Neerl ; 2022 Oct 05.
Article in English | MEDLINE | ID: covidwho-2052965


We model the incidence of the COVID-19 disease during the first wave of the epidemic in Castilla-Leon (Spain). Within-province dynamics may be governed by a generalized logistic map, but this lacks of spatial structure. To couple the provinces, we relate the daily new infections through a density-independent parameter that entails positive spatial correlation. Pointwise values of the input parameters are fitted by an optimization procedure. To accommodate the significant variability in the daily data, with abruptly increasing and decreasing magnitudes, a random noise is incorporated into the model, whose parameters are calibrated by maximum likelihood estimation. The calculated paths of the stochastic response and the probabilistic regions are in good agreement with the data.

Stoch Environ Res Risk Assess ; 36(9): 2907-2917, 2022.
Article in English | MEDLINE | ID: covidwho-1941672


We provide a stochastic modeling framework for the incidence of COVID-19 in Castilla-Leon (Spain) for the period March 1, 2020 to February 12, 2021, which encompasses four waves. Each wave is appropriately described by a generalized logistic growth curve. Accordingly, the four waves are modeled through a sum of four generalized logistic growth curves. Pointwise values of the twenty input parameters are fitted by a least-squares optimization procedure. Taking into account the significant variability in the daily reported cases, the input parameters and the errors are regarded as random variables on an abstract probability space. Their probability distributions are inferred from a Bayesian bootstrap procedure. This framework is shown to offer a more accurate estimation of the COVID-19 reported cases than the deterministic formulation.