Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 19 de 19
Filter
Add filters

Document Type
Year range
2.
medrxiv; 2023.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2023.08.20.23293987

ABSTRACT

Background: Decisions to impose temporary travel measures are less common as the global epidemiology of COVID-19 evolves. Risk-based travel measures may avoid the need for a complete travel ban, however evaluations of their effects are lacking. Here we investigated the public health effects of a temporary traffic light system introduced in the United Kingdom (UK) in 2021, imposing red-amber-green (RAG) status based on risk assessment. Methods: We analysed data on international flight passengers arriving into Scotland, COVID-19 testing surveillance, and SARS-CoV-2 whole genome sequences to quantify effects of the traffic light system on (i) international travel frequency, (ii) travel-related SARS-CoV-2 case importations, (iii) national SARS-CoV-2 case incidence, and (iv) importation of novel SARS-CoV-2 variants. Results: International flight passengers arriving into Scotland had increased by 754% during the traffic light period. Amber list countries were the most frequently visited and ranked highly for SARS-CoV-2 importations and contribution to national case incidence. Rates of international travel and associated SARS-CoV-2 cases varied significantly across age, health board, and deprivation groups. Multivariable logistic regression revealed SARS-CoV-2 cases detections were less likely among travellers than non-travellers, although increasing from green-to-amber and amber-to-red lists. When examined according to travel destination, SARS-CoV-2 importation risks did not strictly follow RAG designations, and red lists did not prevent establishment of novel SARS-CoV-2 variants. Conclusions: Our findings suggest that country-specific post-arrival screening undertaken in Scotland did not prohibit the public health impact of COVID-19 in Scotland. Travel rates likely contributed to patterns of high SARS-CoV-2 case importation and population impact.

3.
biorxiv; 2023.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2023.07.12.548617

ABSTRACT

The emergence of SARS-CoV in 2002 and SARS-CoV-2 in 2019 has led to increased sampling of related sarbecoviruses circulating primarily in horseshoe bats. These viruses undergo frequent recombination and exhibit spatial structuring across Asia. Employing recombination-aware phylogenetic inference on bat sarbecoviruses, we find that the closest-inferred bat virus ancestors of SARS-CoV and SARS-CoV-2 existed just ~1-3 years prior to their emergence in humans. Phylogeographic analyses examining the movement of related sarbecoviruses demonstrate that they traveled at similar rates to their horseshoe bat hosts and have been circulating for thousands of years in Asia. The closest-inferred bat virus ancestor of SARS-CoV likely circulated in western China, and that of SARS-CoV-2 likely circulated in a region comprising southwest China and northern Laos, both a substantial distance from where they emerged. This distance and recency indicate that the direct ancestors of SARS-CoV and SARS-CoV-2 could not have reached their respective sites of emergence via the bat reservoir alone. Our recombination-aware dating and phylogeographic analyses reveal a more accurate inference of evolutionary history than performing only whole-genome or single gene analyses. These results can guide future sampling efforts and demonstrate that viral genomic fragments extremely closely related to SARS-CoV and SARS-CoV-2 were circulating in horseshoe bats, confirming their importance as the reservoir species for SARS viruses.

4.
biorxiv; 2022.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2022.09.09.507349

ABSTRACT

SARS-CoV-2 is the virus responsible for the COVID-19 pandemic, which began in late 2019 and has resulted in millions of death globally. The need to understand the pandemic means that detailed descriptions of features of this virus are now of interest to non-expert audiences. In particular, there has been much public interest in the spike protein that protrudes from the surface of the SARS-CoV-2 virus particle. The spike is the major determinant of viral infectivity and the main target for protective immune responses, and included in vaccines, and so its properties influence the impact of the pandemic on people's lives. This protein is rapidly evolving, with mutations that enhance transmissibility or weaken vaccine protection creating new variants of concern (VOCs) and associated sub-lineages. The spread of SARS-CoV-2 VOCs has been tracked by groups such as the COVID-19 Genomics UK consortium (COG-UK). Their online mutation explorer (COG-UK/ME), which analyses and shares SARS-CoV-2 sequence data, contains information about VOCs that is designed primarily for an expert audience but is potentially of general interest during a pandemic. We wished to make this detailed information about SARS-CoV-2 VOCs more widely accessible. Previously work has shown that visualisations and interactivity can facilitate active learning and boost engagement with molecular biology topics, while animations of these topics can boost understanding on protein structure, function, and dynamics. We therefore set out to develop an educational graphical resource, the SARS-CoV-2 Spike Protein Mutation Explorer (SSPME), which contains interactive 3D molecular models and animations explaining SARS-CoV-2 spike protein variants and VOCs. We performed user-testing of the original COG-UK/ME website and of the SSPME, using a within-groups design to measure knowledge acquisition and a between-groups design to contrast the effectiveness and usability. Statistical analysis demonstrated that, when compared to the COG-UK/ME, the SSPME had higher usability and significantly improved participant knowledge confidence and knowledge acquisition. The SSPME therefore provides an example of how 3D interactive visualisations can be used for effective science communication and education on complex biomedical topics, as well as being a resource to improve the public understanding of SARS-CoV-2 VOCs.

5.
medrxiv; 2022.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2022.05.30.22275783

ABSTRACT

The Omicron SARS-CoV-2 variant led to a dramatic global epidemic wave following detection in South Africa in November, 2021. The Omicron lineage BA.1 was dominant and responsible for most domestic outbreaks during December 2021-January 2022, whilst other Omicron lineages including BA.2 accounted for the minority of global isolates. Here, we describe the Omicron wave in the Philippines by analysing genomic data. Our results identify the presence of both BA.1 and BA.2 lineages in the Philippines in December 2021, before cases surged in January 2022. We infer that only lineage BA.2 underwent sustained transmission in the country, with an estimated emergence around November 18th, 2021 [95% highest posterior density: November 6-28th], whilst despite multiple introductions BA.1 transmission remained limited. These results suggest the Philippines was one of the earliest areas affected by BA.2, and reiterate the importance of whole-genome sequencing for monitoring outbreaks.

6.
medrxiv; 2022.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2022.03.24.22272915

ABSTRACT

ObjectiveTo determine how the severity of successively dominant SARS-CoV-2 variants changed over the course of the COVID-19 pandemic. DesignRetrospective cohort analysis. SettingCommunity- and hospital-sequenced COVID-19 cases in the NHS Greater Glasgow and Clyde (NHS GG&C) Health Board. ParticipantsAll sequenced non-nosocomial adult COVID-19 cases in NHS GG&C infected with the relevant SARS-CoV-2 lineages during analysis periods. B.1.177/Alpha: 1st November 2020 - 30th January 2021 (n = 1640). Alpha/Delta: 1st April - 30th June 2021 (n = 5552). AY.4.2 Delta/non-AY.4.2 Delta: 1st July - 31st October 2021 (n = 9613). Non-AY.4.2 Delta/Omicron: 1st - 31st December 2021 (n = 3858). Main outcome measuresAdmission to hospital, ICU, or death within 28 days of positive COVID-19 test ResultsFor B.1.177/Alpha, 300 of 807 B.1.177 cases were recorded as hospitalised or worse, compared to 232 of 833 Alpha cases. After adjustment, the cumulative odds ratio was 1.51 (95% CI: 1.08-2.11) for Alpha versus B.1.177. For Alpha/Delta, 113 of 2104 Alpha cases were recorded as hospitalised or worse, compared to 230 of 3448 Delta cases. After adjustment, the cumulative odds ratio was 2.09 (95% CI: 1.42-3.08) for Delta versus Alpha. For non-AY.4.2 Delta/AY.4.2 Delta, 845 of 8644 non-AY.4.2 Delta cases were recorded as hospitalised or worse, compared to 101 of 969 AY.4.2 Delta cases. After adjustment, the cumulative odds ratio was 0.99 (95% CI: 0.76-1.27) for AY.4.2 Delta versus non-AY.4.2 Delta. For non-AY.4.2 Delta/Omicron, 30 of 1164 non-AY.4.2 Delta cases were recorded as hospitalised or worse, compared to 26 of 2694 Omicron cases. After adjustment, the median cumulative odds ratio was 0.49 (95% CI: 0.22-1.06) for Omicron versus non-AY.4.2 Delta. ConclusionsThe direction of change in disease severity between successively emerging SARS-CoV-2 variants of concern was inconsistent. This heterogeneity demonstrates that severity associated with future SARS-CoV-2 variants is unpredictable.

7.
medrxiv; 2022.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2022.02.10.22270799

ABSTRACT

Introduction Viral sequencing of SARS-CoV-2 has been used for outbreak investigation, but there is limited evidence supporting routine use for infection prevention and control (IPC) within hospital settings. Methods We conducted a prospective non-randomised trial of sequencing at 14 acute UK hospital trusts. Sites each had a 4-week baseline data-collection period, followed by intervention periods comprising 8 weeks of 'rapid' (<48h) and 4 weeks of 'longer-turnaround' (5-10 day) sequencing using a sequence reporting tool (SRT). Data were collected on all hospital onset COVID-19 infections (HOCIs; detected [≥]48h from admission). The impact of the sequencing intervention on IPC knowledge and actions, and on incidence of probable/definite hospital-acquired infections (HAIs) was evaluated. Results A total of 2170 HOCI cases were recorded from October 2020-April 2021, with sequence reports returned for 650/1320 (49.2%) during intervention phases. We did not detect a statistically significant change in weekly incidence of HAIs in longer-turnaround (IRR 1.60, 95%CI 0.85-3.01; P=0.14) or rapid (0.85, 0.48-1.50; P=0.54) intervention phases compared to baseline phase. However, IPC practice was changed in 7.8% and 7.4% of all HOCI cases in rapid and longer-turnaround phases, respectively, and 17.2% and 11.6% of cases where the report was returned. In a per-protocol sensitivity analysis there was an impact on IPC actions in 20.7% of HOCI cases when the SRT report was returned within 5 days. Conclusion While we did not demonstrate a direct impact of sequencing on the incidence of nosocomial transmission, our results suggest that sequencing can inform IPC response to HOCIs, particularly when returned within 5 days.

8.
preprints.org; 2022.
Preprint in English | PREPRINT-PREPRINTS.ORG | ID: ppzbmed-10.20944.preprints202102.0590.v2

ABSTRACT

The spillover of a virus from an animal reservoir to humans requires both molecular and ecological risk factors to align. While extensive research both before and after the emergence of SARS-CoV-2 in 2019 implicates horseshoe bats as the significant animal reservoir for the new human coronavirus, it remains unclear why it emerged at this time. One massive disruption to animal-human contacts in 2019 is linked to the on-going African swine fever virus (ASFV) pandemic. Pork is the major meat source in the Chinese diet. We hypothesize that the dramatic shortage of pork following large-scale culling and restrictions of pig movement (resulting in marked price increases) led to alternative sources of meat and unusual animal and meat movements nationwide, e.g., involving wildlife, and thus greatly increased opportunities for human-sarbecovirus contacts. Pork prices were particularly high in southern provinces (Guangdong, Guangxi, Fujian, Jiangxi, Hunan, and Hubei), where wildlife is farmed and more frequently consumed. Major wildlife farming provinces are spread from Northern to Southern China, which overlaps with horseshoe bat host ranges, potential hosts of the proximal SARS-CoV-2 ancestor, and wildlife sourcing provinces of Wuhan Huanan market and possibly other markets. Trading of SARS-CoV-2 susceptible wildlife in these markets, such as minks, raccoon dogs, foxes and palm civets in Wuhan markets, could have increased the risk of SARS-CoV-2 from an intermediary host. Moreover, large quantities of animals raised for fur could have entered the human food chain undetected and significantly increased risks of animal-human contact. Performing retrospective testing of stored susceptible animals and their meat sold before December 2019 may be helpful in the next stage of tracing the animal origin of SARS-CoV-2 as spillover events are more likely to have taken place in 2019 when China was experiencing the worst effects of the ASFV pandemic.

9.
medrxiv; 2022.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2022.01.03.21268111

ABSTRACT

Vaccination-based exposure to spike protein derived from early SARS-CoV-2 sequences is the key public health strategy against COVID-19. Successive waves of SARS-CoV-2 infections have been characterised by the evolution of highly mutated variants that are more transmissible and that partially evade the adaptive immune response. Omicron is the fifth of these Variants of Concern (VOCs) and is characterised by a step change in transmission capability, suggesting significant antigenic and biological change. It is characterised by 45 amino acid substitutions, including 30 changes in the spike protein relative to one of the earliest sequences, Wuhan-Hu-1, of which 15 occur in the receptor-binding domain, an area strongly associated with humoral immune evasion. In this study, we demonstrate both markedly decreased neutralisation in serology assays and real-world vaccine effectiveness in recipients of two doses of vaccine, with efficacy partially recovered by a third mRNA booster dose. We also show that immunity from natural infection (without vaccination) is more protective than two doses of vaccine but inferior to three doses. Finally, we demonstrate fundamental changes in the Omicron entry process in vitro, towards TMPRSS2-independent fusion, representing a major shift in the replication properties of SARS-CoV-2. Overall, these findings underlie rapid global transmission and may alter the clinical severity of disease associated with the Omicron variant.

10.
medrxiv; 2021.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2021.08.17.21260128

ABSTRACT

BackgroundThe B.1.1.7 (Alpha) SARS-CoV-2 variant of concern was associated with increased transmission relative to other variants present at the time of its emergence and several studies have shown an association between the B.1.1.7 lineage infection and increased 28-day mortality. However, to date none have addressed the impact of infection on severity of illness or the need for oxygen or ventilation. MethodsIn this prospective clinical cohort sub-study of the COG-UK consortium, 1475 samples from hospitalised and community cases collected between the 1st November 2020 and 30th January 2021 were collected. These samples were sequenced in local laboratories and analysed for the presence of B.1.1.7-defining mutations. We prospectively matched sequence data to clinical outcomes as the lineage became dominant in Scotland and modelled the association between B.1.1.7 infection and severe disease using a 4-point scale of maximum severity by 28 days: 1. no support, 2. oxygen, 3. ventilation and 4. death. Additionally, we calculated an estimate of the growth rate of B.1.1.7-associated infections following introduction into Scotland using phylogenetic data. ResultsB.1.1.7 was responsible for a third wave of SARS-CoV-2 in Scotland, and rapidly replaced the previously dominant second wave lineage B.1.177) due to a significantly higher transmission rate ([~]5 fold). Of 1475 patients, 364 were infected with B.1.1.7, 1030 with B.1.177 and 81 with other lineages. Our cumulative generalised linear mixed model analyses found evidence (cumulative odds ratio: 1.40, 95% CI: 1.02, 1.93) of a positive association between increased clinical severity and lineage (B.1.1.7 versus non-B.1.1.7). Viral load was higher in B.1.1.7 samples than in non-B.1.1.7 samples as measured by cycle threshold (Ct) value (mean Ct change: -2.46, 95% CI: -4.22, -0.70). ConclusionsThe B.1.1.7 lineage was associated with more severe clinical disease in Scottish patients than co-circulating lineages. FundingCOG-UK is supported by funding from the Medical Research Council (MRC) part of UK Research & Innovation (UKRI), the National Institute of Health Research (NIHR) and Genome Research Limited, operating as the Wellcome Sanger Institute. Funding was also provided by UKRI through the JUNIPER consortium (grant number MR/V038613/1). Sequencing and bioinformatics support was funded by the Medical Research Council (MRC) core award (MC UU 1201412).

11.
medrxiv; 2021.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2021.06.24.21259107

ABSTRACT

Background Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) lineage B.1.1.7 has been associated with an increased rate of transmission and disease severity among subjects testing positive in the community. Its impact on hospitalised patients is less well documented. Methods We collected viral sequences and clinical data of patients admitted with SARS-CoV-2 and hospital-onset COVID-19 infections (HOCIs), sampled 16/11/2020 - 10/01/2021, from eight hospitals participating in the COG-UK-HOCI study. Associations between the variant and the outcomes of all-cause mortality and intensive therapy unit (ITU) admission were evaluated using mixed effects Cox models adjusted by age, sex, comorbidities, care home residence, pregnancy and ethnicity. Results Sequences were obtained from 2341 inpatients (HOCI cases = 786) and analysis of clinical outcomes was carried out in 2147 inpatients with all data available. The hazard ratio (HR) for mortality of B.1.1.7 compared to other lineages was 1.01 (95% CI 0.79-1.28, P=0.94) and for ITU admission was 1.01 (95% CI 0.75-1.37, P=0.96). Analysis of sex-specific effects of B.1.1.7 identified increased risk of mortality (HR 1.30, 95% CI 0.95-1.78) and ITU admission (HR 1.82, 95% CI 1.15-2.90) in females infected with the variant but not males (mortality HR 0.82, 95% CI 0.61-1.10; ITU HR 0.74, 95% CI 0.52-1.04). Conclusions In common with smaller studies of patients hospitalised with SARS-CoV-2 we did not find an overall increase in mortality or ITU admission associated with B.1.1.7 compared to other lineages. However, women with B.1.1.7 may be at an increased risk of admission to intensive care and at modestly increased risk of mortality.

12.
medrxiv; 2021.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2021.03.24.21253587

ABSTRACT

Objectives: Patients requiring haemodialysis are at increased risk of serious illness with SARS-CoV-2 infection. To improve the understanding of transmission risks in six Scottish renal dialysis units, we utilised the rapid whole-genome sequencing data generated by the COG-UK consortium. Methods: We combined geographical, temporal and genomic sequence data from the community and hospital to estimate the probability of infection originating from within the dialysis unit, the hospital or the community using Bayesian statistical modelling and compared these results to the details of epidemiological investigations. Results: Of 671 patients, 60 (8.9%) became infected with SARS-CoV-2, of whom 16 (27%) died. Within-unit and community transmission were both evident and an instance of transmission from the wider hospital setting was also demonstrated. Conclusions: Near-real-time SARS-CoV-2 sequencing data can facilitate tailored infection prevention and control measures, which can be targeted at reducing risk in these settings. Key words: SARS-CoV-2, COVID-19, haemodialysis, renal dialysis unit, infection control, rapid sequencing, outbreak, nosocomial Key words: SARS-CoV-2, COVID-19, haemodialysis, renal dialysis unit, infection control, rapid sequencing, outbreak, nosocomial

13.
biorxiv; 2021.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2021.01.22.427830

ABSTRACT

The lack of an identifiable intermediate host species for the proximal animal ancestor of SARS-CoV-2 and the distance (~1500 km) from Wuhan to Yunnan province, where the closest evolutionary related coronaviruses circulating in horseshoe bats have been identified, is fueling speculation on the natural origins of SARS-CoV-2. Here we analyse SARS-CoV-2's related horseshoe bat and pangolin Sarbecoviruses and confirm Rhinolophus affinis continues to be the likely reservoir species as its host range extends across Central and Southern China. This would explain the bat Sarbecovirus recombinants in the West and East China, trafficked pangolin infections and bat Sarbecovirus recombinants linked to Southern China. Recent ecological disturbances as a result of changes in meat consumption could then explain SARS-CoV-2 transmission to humans through direct or indirect contact with the reservoir wildlife, and subsequent emergence towards Hubei in Central China. The only way, however, of finding the animal progenitor of SARS-CoV-2 as well as the whereabouts of its close relatives, very likely capable of posing a similar threat of emergence in the human population and other animals, will be by increasing the intensity of our sampling.

14.
medrxiv; 2021.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2021.01.08.20248677

ABSTRACT

The second SARS virus, SARS-CoV-2, emerged in December 2019, and within a month was globally distributed. It was first introduced into Scotland in February 2020 associated with returning travellers and visitors. By March it was circulating in communities across the UK, and to control COVID-19 cases, and prevent overwhelming of the National Health Service (NHS), a 'lockdown' was introduced on 23rd March 2020 with a restriction of people's movements. To augment the public health efforts a large-scale genome epidemiology effort (as part of the COVID-19 Genomics UK (COG-UK) consortium) resulted in the sequencing of over 5000 SARS-CoV-2 genomes by 18th August 2020 from Scottish cases, about a quarter of the estimated number of cases at that time. Here we quantify the geographical origins of the first wave introductions into Scotland from abroad and other UK regions, the spread of these SARS-CoV-2 lineages to different regions within Scotland (defined at the level of NHS Health Board) and the effect of lockdown on virus 'success'. We estimate that approximately 300 introductions seeded lineages in Scotland, with around 25% of these lineages composed of more than five viruses, but by June circulating lineages were reduced to low levels, in line with low numbers of recorded positive cases. Lockdown was, thus, associated with a dramatic reduction in infection numbers and the extinguishing of most virus lineages. Unfortunately since the summer cases have been rising in Scotland in a second wave, with >1000 people testing positive on a daily basis, and hospitalisation of COVID-19 cases on the rise again. Examining the available Scottish genome data from the second wave, and comparing it to the first wave, we find that while some UK lineages have persisted through the summer, the majority of lineages responsible for the second wave are new introductions from outside of Scotland and many from outside of the UK. This indicates that, while lockdown in Scotland is directly linked with the first wave case numbers being brought under control, travel-associated imports (mostly from Europe or other parts of the UK) following the easing of lockdown are responsible for seeding the current epidemic population. This demonstrates that the impact of stringent public health measures can be compromised if following this, movements from regions of high to low prevalence are not minimised.

15.
medrxiv; 2020.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2020.11.18.20230599

ABSTRACT

While changes in SARS-CoV-2 viral load over time have been documented, detailed information on the impact of remdesivir and how it might alter intra-host viral evolution is limited. Sequential viral loads and deep sequencing of SARS-CoV-2 recovered from the upper respiratory tract of hospitalised children revealed that remdesivir treatment suppressed viral RNA levels in one patient but not in a second infected with an identical strain. Evidence of drug resistance to explain this difference was not found. Reduced levels of subgenomic (sg) RNA during treatment of the second patient, suggest an additional effect of remdesivir on viral replication that is independent of viral RNA levels. Haplotype reconstruction uncovered persistent SARS-CoV-2 variant genotypes in four patients. We conclude that these are likely to have arisen from within-host evolution, and not co-transmission, although superinfection cannot be excluded in one case. Sample-to-sample heterogeneity in the abundances of variant genotypes is best explained by the presence of discrete viral populations in the lung with incomplete population sampling in diagnostic swabs. Such compartmentalisation is well described in serious lung infections caused by influenza and Mycobacterium tuberculosis and has been associated with poor drug penetration, suboptimal treatment and drug resistance. Our data provide evidence that remdesivir is able to suppress SARS-CoV-2 replication in vivo but that its efficacy may be compromised by factors reducing penetration into the lung. Based on data from influenza and Mycobacterium tuberculosis lung infections we conclude that early use of remdesivir combined with other agents should now be evaluated. Summary SentenceDeep sequencing of longitudinal samples from SARS-CoV-2 infected paediatric patients identifies evidence of remdesivir-associated inhibition of viral replication in vivo and uncovers evidence of within host evolution of distinct viral genotypes.

16.
medrxiv; 2020.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2020.11.12.20230326

ABSTRACT

Background: Rapid identification and investigation of healthcare-associated infections (HCAIs) is important for suppression of SARS-CoV-2, but the infection source for hospital onset COVID-19 infections (HOCIs) cannot always be readily identified based only on epidemiological data. Viral sequencing data provides additional information regarding potential transmission clusters, but the low mutation rate of SARS-CoV-2 can make interpretation using standard phylogenetic methods difficult. Methods: We developed a novel statistical method and sequence reporting tool (SRT) that combines epidemiological and sequence data in order to provide a rapid assessment of the probability of HCAI among HOCI cases (defined as first positive test >48 hours following admission) and to identify infections that could plausibly constitute outbreak events. The method is designed for prospective use, but was validated using retrospective datasets from hospitals in Glasgow and Sheffield collected February-May 2020. Results: We analysed data from 326 HOCIs. Among HOCIs with time-from-admission [≥]8 days the SRT algorithm identified close sequence matches from the same ward for 160/244 (65.6%) and in the remainder 68/84 (81.0%) had at least one similar sequence elsewhere in the hospital, resulting in high estimated probabilities of within-ward and within-hospital transmission. For HOCIs with time-from-admission 3-7 days, the SRT probability of healthcare acquisition was >0.5 in 33/82 (40.2%). Conclusions: The methodology developed can provide rapid feedback on HOCIs that could be useful for infection prevention and control teams, and warrants further prospective evaluation. The integration of epidemiological and sequence data is important given the low mutation rate of SARS-CoV-2 and its variable incubation period.

17.
biorxiv; 2020.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2020.11.04.361576

ABSTRACT

The COVID-19 pandemic is a widespread and deadly public health crisis. The pathogen SARS-CoV-2 replicates in the lower respiratory tract and causes fatal pneumonia. Although tremendous efforts have been put into investigating the pathogeny of SARS-CoV-2, the underlying mechanism of how SARS-CoV-2 interacts with its host is largely unexplored. Here, by comparing the genomic sequences of SARS-CoV-2 and human, we identified five fully conserved elements in SARS-CoV-2 genome, which were termed as "human identical sequences (HIS)". HIS are also recognized in both SARS-CoV and MERS-CoV genome. Meanwhile, HIS-SARS-CoV-2 are highly conserved in the primate. Mechanically, HIS-SARS-CoV-2 RNA directly binds to the targeted loci in human genome and further interacts with host enhancers to activate the expression of adjacent and distant genes, including cytokines gene and angiotensin converting enzyme II (ACE2), a well-known cell entry receptor of SARS-CoV-2, and hyaluronan synthase 2 (HAS2), which further increases hyaluronan formation. Noteworthily, hyaluronan level in plasma of COVID-19 patients is tightly correlated with severity and high risk for acute respiratory distress syndrome (ARDS) and may act as a predictor for the progression of COVID-19. HIS antagomirs, which downregulate hyaluronan level effectively, and 4-Methylumbelliferone (MU), an inhibitor of hyaluronan synthesis, are potential drugs to relieve the ARDS related ground-glass pattern in lung for COVID-19 treatment. Our results revealed that unprecedented HIS elements of SARS-CoV-2 contribute to the cytokine storm and ARDS in COVID-19 patients. Thus, blocking HIS-involved activating processes or hyaluronan synthesis directly by 4-MU may be effective strategies to alleviate COVID-19 progression.

18.
biorxiv; 2020.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2020.11.04.355842

ABSTRACT

SARS-CoV-2 can mutate to evade immunity, with consequences for the efficacy of emerging vaccines and antibody therapeutics. Herein we demonstrate that the immunodominant SARS-CoV-2 spike (S) receptor binding motif (RBM) is the most divergent region of S, and provide epidemiological, clinical, and molecular characterization of a prevalent RBM variant, N439K. We demonstrate that N439K S protein has enhanced binding affinity to the hACE2 receptor, and that N439K virus has similar clinical outcomes and in vitro replication fitness as compared to wild- type. We observed that the N439K mutation resulted in immune escape from a panel of neutralizing monoclonal antibodies, including one in clinical trials, as well as from polyclonal sera from a sizeable fraction of persons recovered from infection. Immune evasion mutations that maintain virulence and fitness such as N439K can emerge within SARS-CoV-2 S, highlighting the need for ongoing molecular surveillance to guide development and usage of vaccines and therapeutics.

19.
medrxiv; 2020.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2020.06.08.20124834

ABSTRACT

SARS-CoV-2, the causative agent of COVID-19, emerged in Wuhan, China in December 2019 and spread rapidly throughout the world. Understanding the introductions of this new coronavirus in different settings may assist control efforts and the establishment of frameworks to support rapid response in future infectious disease outbreaks. We investigated the first four weeks of emergence of the SARS-CoV-2 virus in Scotland after the first case reported on the 1st March 2020. We obtained full genome sequences from 452 individuals with a laboratory-confirmed diagnosis of COVID-19, representing 20% of all cases until 1st April 2020 (n=2310). This permitted a genomic epidemiology approach to study the introductions and spread of the SARS-2 virus in Scotland. From combined phylogenetic and epidemiological analysis, we estimated at least 113 introductions of SARS-CoV-2 into Scotland during this period. Clusters containing multiple sequences suggestive of onward transmission occurred in 48/86 (56%). 42/86 (51%) clusters had no known international travel history indicating undetected introductions. The majority of viral sequences were most closely related to those circulating in other European countries, including Italy, Austria and Spain. Travel-associated introductions of SARS-CoV-2 into Scotland predated travel restrictions in the UK and other European countries. The first local transmission occurred three days after the first case. A shift from travel-associated to sustained community transmission was apparent after only 11 days. Undetected introductions occurred prior to the first known case of COVID-19. Earlier travel restrictions and quarantine measures might have resulted in fewer introductions into Scotland, thereby reducing the number of cases and the subsequent burden on health services. The high number of introductions and transmission rates were likely to have impacted on national contact tracing efforts. Our results also demonstrate that local real-time genomic epidemiology can be used to monitor transmission clusters and facilitate control efforts to restrict the spread of COVID-19. FundingMRC (MC UU 1201412), UKRI/Wellcome (COG-UK), Wellcome Trust Collaborator Award (206298/Z/17/Z - ARTIC Network; TCW Wellcome Trust Award 204802/Z/16/Z Research in contextO_ST_ABSEvidence before this studyC_ST_ABSCoronavirus disease-2019 (COVID-19) was first diagnosed in Scotland on the 1st of March 2020 following the emergence of the causative severe acute respiratory system coronavirus 2 (SARS-CoV-2) virus in China in December 2019. During the first month of the outbreak in Scotland, 2310 positive cases of COVID-19 were detected, associated with 1832 hospital admissions, 207 intensive care admissions and 126 deaths. The number of introductions into Scotland and the source of those introductions was not known prior to this study. Added value of this studyUsing a combined phylogenetic and epidemiological approach following real-time next generation sequencing of 452 SARS-CoV-2 samples, it was estimated that the virus was introduced to Scotland on at least 113 occasions, mostly from other European countries, including Italy, Austria and Spain. Localised outbreaks occurred in the community across multiple Scottish health boards, within healthcare facilities and an international conference and community transmission was established rapidly, before local and international lockdown measures were introduced.

SELECTION OF CITATIONS
SEARCH DETAIL