Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters

Language
Year range
1.
J Clin Virol ; 152: 105170, 2022 Jul.
Article in English | MEDLINE | ID: covidwho-1814679

ABSTRACT

BACKGROUND: The Omicron variant of concern is characterised by more than 50 distinct mutations, most in the spike protein. The implications of these for disease transmission, tissue tropism and diagnostic testing needs study. OBJECTIVES: We evaluated the performance of RT-PCR on saliva (SA) swabs and antigen testing on mid-turbinate MT samples relative to RT-PCR on MT swabs. Patients (n = 453) presenting for outpatient testing at the Groote Schuur Hospital COVID-19 testing centre in Cape Town South Africa were recruited. Participants were recruited during the Delta (n = 304) and Omicron (n = 149) waves. RESULTS: In 30 confirmed Delta infections, positive percent agreement (PPA) of RT-PCR on saliva was only 73% compared to a composite standard of either MT or SA RT-PCR positivity, with rapid decay by day 3 after symptom onset. In contrast, in the 70 Omicron infections, SA performed as well as, or better than, MT samples up to day 5, with an overall PPA of SA swabs of 96% and MT of 93%. A change in antigen test performance was noted, with PPA of 93% in Delta, but only 68% for Omicron. CONCLUSIONS: Altered shedding kinetics appear to be present in Omicron-infected patients with more viral RNA detectable in saliva. Saliva swabs are a promising alternative to nasal samples, especially early in infection when sampling of both sites could improve detection. Lower sensitivity of antigen tests in Omicron is a concern and requires further study.


Subject(s)
COVID-19 Testing , COVID-19 , Humans , SARS-CoV-2 , Sensitivity and Specificity , South Africa , Tropism
2.
Nature ; 603(7902): 679-686, 2022 03.
Article in English | MEDLINE | ID: covidwho-1638766

ABSTRACT

The SARS-CoV-2 epidemic in southern Africa has been characterized by three distinct waves. The first was associated with a mix of SARS-CoV-2 lineages, while the second and third waves were driven by the Beta (B.1.351) and Delta (B.1.617.2) variants, respectively1-3. In November 2021, genomic surveillance teams in South Africa and Botswana detected a new SARS-CoV-2 variant associated with a rapid resurgence of infections in Gauteng province, South Africa. Within three days of the first genome being uploaded, it was designated a variant of concern (Omicron, B.1.1.529) by the World Health Organization and, within three weeks, had been identified in 87 countries. The Omicron variant is exceptional for carrying over 30 mutations in the spike glycoprotein, which are predicted to influence antibody neutralization and spike function4. Here we describe the genomic profile and early transmission dynamics of Omicron, highlighting the rapid spread in regions with high levels of population immunity.


Subject(s)
COVID-19/epidemiology , COVID-19/virology , Immune Evasion , SARS-CoV-2/isolation & purification , Antibodies, Neutralizing/immunology , Botswana/epidemiology , COVID-19/immunology , COVID-19/transmission , Humans , Models, Molecular , Mutation , Phylogeny , Recombination, Genetic , SARS-CoV-2/classification , SARS-CoV-2/immunology , South Africa/epidemiology , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/immunology
3.
2021.
Preprint in English | Other preprints | ID: ppcovidwho-296139

ABSTRACT

The Beta variant of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) emerged in South Africa in late 2020 and rapidly became the dominant variant, causing over 95% of infections in the country during and after the second epidemic wave. Here we show rapid replacement of the Beta variant by the Delta variant, a highly transmissible variant of concern (VOC) that emerged in India and subsequently spread around the world. The Delta variant was imported to South Africa primarily from India, spread rapidly in large monophyletic clusters to all provinces, and became dominant within three months of introduction. This was associated with a resurgence in community transmission, leading to a third wave which was associated with a high number of deaths. We estimated a growth advantage for the Delta variant in South Africa of 0.089 (95% confidence interval [CI] 0.084-0.093) per day which corresponds to a transmission advantage of 46% (95% CI 44-48) compared to the Beta variant. These data provide additional support for the increased transmissibility of the Delta variant relative to other VOC and highlight how dynamic shifts in the distribution of variants contribute to the ongoing public health threat.

SELECTION OF CITATIONS
SEARCH DETAIL