Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
2.
J Sep Sci ; 44(22): 4064-4081, 2021 Nov.
Article in English | MEDLINE | ID: covidwho-1525471

ABSTRACT

Coronil is a tri-herbal medicine consisting of immunomodulatory herbs, Withania somnifera, Tinospora cordifolia, and Ocimum sanctum. The formulation has been developed specifically as the supporting measure for COVID-19. Current investigation is aimed to identify the phytoconstituents in Coronil utilizing ultra-performance liquid chromatography-mass spectrometry coupled with quadrapole time of flight and to establish its quality standardization using high-performance liquid chromatography and high performance thin layer chromatography. Out of 52 identified compounds, cordifolioside A, magnoflorine, rosmarinic acid, palmatine, withanoside IV, withanoside V, withanone, betulinic acid, and ursolic acid were quantified in 15 different batches of Coronil on validated high-performance liquid chromatography method. Similarly, withanoside IV, withaferin A, magnoflorine, palmatine, rosmarinic acid, and ursolic acid were analyzed on high performance thin layer chromatography. Methods were validated as per the International Council for Harmonization guidelines. These methods were specific, reproducible, accurate, precise, linear (r2 > 0.99), and percent recoveries were within the prescribed limits. The content uniformity of Coronil was ascertained using Fourier transform infrared spectroscopy. Results indicated that, validated methods were fit for their intended use and the analytical quality of Coronil was consistent across the batches. Taken together, these developed methods could drive the analytical quality control of herbal medicines such as Coronil, and other formulations containing similar chemical profiles.


Subject(s)
COVID-19/drug therapy , Chromatography, High Pressure Liquid/methods , Herbal Medicine , Mass Spectrometry/methods , Phytochemicals/analysis , COVID-19/virology , Chromatography, Thin Layer/methods , Humans , Quality Control , SARS-CoV-2/isolation & purification , Spectroscopy, Fourier Transform Infrared/methods
3.
J Sep Sci ; 44(16): 3146-3157, 2021 Aug.
Article in English | MEDLINE | ID: covidwho-1260558

ABSTRACT

Divya-Swasari-Vati is a calcium containing polyherbal ayurvedic medicine prescribed for the lung-related ailments observed in the current pandemic of Severe Acute Respiratory Syndrome Coronavirus 2 infections. The formulation is a unique quintessential blend of nine herbs cited in Ayurvedic texts for chronic cough and lung infection. Analytical standardization of herbal medicines is the pressing need of the hour to ascertain the quality compliance. This persuaded us to develop a simple, rapid, and selective high-performance thin-layer chromatographic method for Divya-Swasari-Vati quality standardization. The developed method was validated for the quantification of marker components, gallic acid, cinnamic acid, piperine, eugenol and glycyrrhizin, against reference standards in five different batches of Divya-Swasari-Vati. The analytes were identified by visualization at 254 nm, and by matching their retention factor with authentic standards. The developed method was validated as per the guidelines recommended by the International Council for Harmonization for parameters like, linearity, limit of detection, limit of quantification, accuracy, and precision. Therefore, the developed novel high-performance thin-layer chromatographic process could be employed for rapid standardization of Divya-Swasari-Vati and other related herbal formulation, which would aid in quality manufacturing and product development.


Subject(s)
Alkaloids/analysis , Benzodioxoles/analysis , Cinnamates/analysis , Eugenol/analysis , Gallic Acid/analysis , Glycyrrhizic Acid/analysis , Piperidines/analysis , Plant Extracts/analysis , Polyunsaturated Alkamides/analysis , Alkaloids/therapeutic use , Benzodioxoles/therapeutic use , Chromatography, Thin Layer , Cinnamates/therapeutic use , Eugenol/therapeutic use , Gallic Acid/therapeutic use , Glycyrrhizic Acid/therapeutic use , Humans , Lung Diseases/drug therapy , Medicine, Ayurvedic , Molecular Structure , Piperidines/therapeutic use , Plant Extracts/therapeutic use , Plants, Medicinal/chemistry , Polyunsaturated Alkamides/therapeutic use
4.
Drug Des Devel Ther ; 15: 1111-1133, 2021.
Article in English | MEDLINE | ID: covidwho-1150609

ABSTRACT

PURPOSE: SARS-CoV-2 engages human ACE2 through its spike (S) protein receptor binding domain (RBD) to enter the host cell. Recent computational studies have reported that withanone and withaferin A, phytochemicals found in Withania somnifera, target viral main protease (MPro) and host transmembrane TMPRSS2, and glucose related protein 78 (GRP78), respectively, implicating their potential as viral entry inhibitors. Absence of specific treatment against SARS-CoV-2 infection has encouraged exploration of phytochemicals as potential antivirals. AIM: This study aimed at in silico exploration, along with in vitro and in vivo validation of antiviral efficacy of the phytochemical withanone. METHODS: Through molecular docking, molecular dynamic (MD) simulation and electrostatic energy calculation the plausible biochemical interactions between withanone and the ACE2-RBD complex were investigated. These in silico observations were biochemically validated by ELISA-based assays. Withanone-enriched extract from W. somnifera was tested for its ability to ameliorate clinically relevant pathological features, modelled in humanized zebrafish through SARS-CoV-2 recombinant spike (S) protein induction. RESULTS: Withanone bound efficiently at the interacting interface of the ACE2-RBD complex and destabilized it energetically. The electrostatic component of binding free energies of the complex was significantly decreased. The two intrachain salt bridge interactions (K31-E35) and the interchain long-range ion-pair (K31-E484), at the ACE2-RBD interface were completely abolished by withanone, in the 50 ns simulation. In vitro binding assay experimentally validated that withanone efficiently inhibited (IC50=0.33 ng/mL) the interaction between ACE2 and RBD, in a dose-dependent manner. A withanone-enriched extract, without any co-extracted withaferin A, was prepared from W. somnifera leaves. This enriched extract was found to be efficient in ameliorating human-like pathological responses induced in humanized zebrafish by SARS-CoV-2 recombinant spike (S) protein. CONCLUSION: In conclusion, this study provided experimental validation for computational insight into the potential of withanone as a potent inhibitor of SARS-CoV-2 coronavirus entry into the host cells.


Subject(s)
Angiotensin-Converting Enzyme 2/metabolism , Antiviral Agents/pharmacology , COVID-19/drug therapy , SARS-CoV-2/drug effects , Spike Glycoprotein, Coronavirus/metabolism , Withania , Withanolides/pharmacology , A549 Cells , Animals , Antiviral Agents/chemistry , Antiviral Agents/isolation & purification , COVID-19/enzymology , COVID-19/virology , Disease Models, Animal , Female , Host-Pathogen Interactions , Humans , Male , Molecular Docking Simulation , Molecular Dynamics Simulation , Protein Interaction Domains and Motifs , SARS-CoV-2/metabolism , SARS-CoV-2/pathogenicity , Spike Glycoprotein, Coronavirus/chemistry , Static Electricity , Structure-Activity Relationship , Virus Internalization/drug effects , Withania/chemistry , Withanolides/chemistry , Withanolides/isolation & purification , Zebrafish
SELECTION OF CITATIONS
SEARCH DETAIL