Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 29
Filter
1.
Infect Genet Evol ; 106: 105381, 2022 Oct 26.
Article in English | MEDLINE | ID: covidwho-2086565

ABSTRACT

Island communities are interesting study sites for microbial evolution during epidemics, as their insular nature reduces the complexity of the population's connectivity. This was particularly true on Reunion Island during the first half of 2021, when international travel was restricted in order to mitigate the risk for SARS-CoV-2 introductions. Concurrently, the SARS-CoV-2 Beta variant became dominant and started to circulate at high levels for several months before being completely replaced by the Delta variant as of October 2021. Here, we explore some of the particularities of SARS-CoV-2 genomic evolution within the insular context of Reunion Island. We show that island isolation allowed the amplification and expansion of unique genetic lineages that remained uncommon across the globe. Islands are therefore potential hotspots for the emergence of new genetic variants, meaning that they will play a key role in the continued evolution and propagation of COVID-19 as the pandemic persists.

2.
Emerg Microbes Infect ; 11(1): 2423-2432, 2022 Dec.
Article in English | MEDLINE | ID: covidwho-2028961

ABSTRACT

Omicron variant is circulating in the presence of a globally acquired immunity unlike the ancestral SARS-CoV-2 isolate. Herein, we investigated the normalized viral load dynamics and viral culture status in 44 fully vaccinated healthcare workers (HCWs) infected with the Omicron BA.1 variant. Viral load dynamics of 38 unvaccinated HCWs infected with the 20A variant during the first pandemic wave was also studied. We then explored the impact of Omicron infection on pre-existing immunity assessing anti-RBD IgG levels, neutralizing antibody titres against 19A, Delta and Omicron isolates, as well as IFN-γ release following cell stimulation with SARS-CoV-2 peptides. We reported that two weeks after diagnosis a greater proportion of HCWs infected with 20A (78.9%, 15/19) than with Omicron BA.1 (44.7%, 17/38; p = 0.02) were still positive by RT-qPCR. We found that Omicron breakthrough infections led to an overall enhancement of vaccine-induced humoral and cellular immunity as soon as a median [interquartile range] of 8 [7-9] days post symptom onset. Among samples with similar high viral loads, non-culturable samples exhibited higher neutralizing antibody titres and anti-RBD IgG levels than culturable samples. Additionally, Omicron infection led to an enhancement of antibodies neutralization capacity against other SARS-CoV-2 isolates. Taken together, the results suggest that Omicron BA.1 vaccine breakthrough infection is associated with a faster viral clearance than that of the ancestral SARS-CoV-2, in addition this new variant leads to a rapid enhancement of the humoral response against multiple SARS-CoV-2 variants, and of the cellular response.


Subject(s)
COVID-19 , Viral Vaccines , Humans , SARS-CoV-2/genetics , Virus Shedding , Antibodies, Viral , Immunoglobulin G , Antibodies, Neutralizing
3.
Int J Infect Dis ; 124: 104-106, 2022 Nov.
Article in English | MEDLINE | ID: covidwho-2007750

ABSTRACT

We reported herein a simultaneous co-identification with Omicron (B.1.1.529) and Delta (21A/478K.V1) SARS-CoV-2 variants, confirmed by whole genome sequencing in an 83-year-old French patient.


Subject(s)
COVID-19 , Coinfection , Humans , Aged, 80 and over , SARS-CoV-2/genetics , Genome, Viral , Sequence Analysis, DNA , COVID-19/diagnosis , Whole Genome Sequencing
4.
Viruses ; 14(8)2022 07 29.
Article in English | MEDLINE | ID: covidwho-1969505

ABSTRACT

Whole-genome sequencing has become an essential tool for real-time genomic surveillance of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) worldwide. The handling of raw next-generation sequencing (NGS) data is a major challenge for sequencing laboratories. We developed an easy-to-use web-based application (EPISEQ SARS-CoV-2) to analyse SARS-CoV-2 NGS data generated on common sequencing platforms using a variety of commercially available reagents. This application performs in one click a quality check, a reference-based genome assembly, and the analysis of the generated consensus sequence as to coverage of the reference genome, mutation screening and variant identification according to the up-to-date Nextstrain clade and Pango lineage. In this study, we validated the EPISEQ SARS-CoV-2 pipeline against a reference pipeline and compared the performance of NGS data generated by different sequencing protocols using EPISEQ SARS-CoV-2. We showed a strong agreement in SARS-CoV-2 clade and lineage identification (>99%) and in spike mutation detection (>99%) between EPISEQ SARS-CoV-2 and the reference pipeline. The comparison of several sequencing approaches using EPISEQ SARS-CoV-2 revealed 100% concordance in clade and lineage classification. It also uncovered reagent-related sequencing issues with a potential impact on SARS-CoV-2 mutation reporting. Altogether, EPISEQ SARS-CoV-2 allows an easy, rapid and reliable analysis of raw NGS data to support the sequencing efforts of laboratories with limited bioinformatics capacity and those willing to accelerate genomic surveillance of SARS-CoV-2.


Subject(s)
COVID-19 , SARS-CoV-2 , COVID-19/diagnosis , Genome, Viral , High-Throughput Nucleotide Sequencing/methods , Humans , Mutation , SARS-CoV-2/genetics
5.
Viruses ; 14(8)2022 07 27.
Article in English | MEDLINE | ID: covidwho-1969493

ABSTRACT

In the present study, we provide a retrospective genomic surveillance of the SARS-CoV-2 pandemic in Lebanon; we newly sequence the viral genomes of 200 nasopharyngeal samples collected between July 2020 and February 2021 from patients in different regions of Lebanon and from travelers crossing the Lebanese-Syrian border, and we also analyze the Lebanese genomic dataset available at GISAID. Our results show that SARS-CoV-2 infections in Lebanon during this period were shaped by the turnovers of four dominant SARS-CoV-2 lineages, with B.1.398 being the first to thoroughly dominate. Lebanon acted as a dispersal center of B.1.398 to other countries, with intercontinental transmissions being more common than within-continent. Within the country, the district of Tripoli, which was the source of 43% of the total B.1.398 sequences in our study, was identified as being an important source of dispersal in the country. In conclusion, our findings exemplify the butterfly effect, by which a lineage that emerges in a small area can be spread around the world, and highlight the potential role of developing countries in the emergence of new variants.


Subject(s)
COVID-19 , COVID-19/epidemiology , Humans , Lebanon/epidemiology , Pandemics , Retrospective Studies , SARS-CoV-2/genetics
8.
Viruses ; 14(5)2022 04 28.
Article in English | MEDLINE | ID: covidwho-1820408

ABSTRACT

OBJECTIVES: High viral load in upper respiratory tract specimens observed for Delta cases might contribute to its increased infectivity compared to the other variant. However, it is not yet documented if the Omicron variant's enhanced infectivity is also related to a higher viral load. Our aim was to determine if the Omicron variant's spread is also related to higher viral loads compared to the Delta variant. METHODS: Nasopharyngeal swabs, 129 (Omicron) and 85 (Delta), from Health Care Workers were collected during December 2021 at the University Hospital of Lyon, France. Cycle threshold (Ct) for the RdRp target of cobas® 6800 SARS-CoV-2 assay was used as a proxy to evaluate SARS-CoV-2 viral load. Variant identification was performed using a screening panel and confirmed by whole genome sequencing. RESULTS: Herein, we showed that the RT-PCR Ct values in Health Care Workers sampled within 5 days after symptom onset were significantly higher for Omicron cases than Delta cases (21.7 for Delta variant and 23.8 for Omicron variant, p = 0.008). This difference was also observed regarding patient with complete vaccination. CONCLUSIONS: This result supports the studies showing that the increased transmissibility of Omicron is related to other mechanisms than higher virus excretion.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Nasopharynx , SARS-CoV-2/genetics , Viral Load
9.
EuropePMC; 2022.
Preprint in English | EuropePMC | ID: ppcovidwho-332623

ABSTRACT

Recombination is a crucial process in the evolution of many organisms. Although the evolutionary reasons behind its occurrence in RNA viruses are debated, this phenomenon has been associated with major epidemiological events such as virus host range expansion, antigenic shift or variation in virulence 1,2, and this process occurs frequently in positive strand RNA viruses such as coronaviruses. The SARS-CoV-2 pandemic has been associated with the repeated emergence of variants of concern presenting increased transmissibility, severity or immune escape 3. The recent extensive circulation of Delta worldwide and its subsequent replacement by viruses of the Omicron lineage 4 (BA.1 then BA.2), have created conditions for genetic exchanges between viruses with both genetic diversity and phenotypic specificities 5-7. Here we report the identification and in vitro and in vivo characterization of a Delta-Omicron recombinant in Europe. This recombinant exhibits immune escape properties similar to Omicron, while its behavior in mice expressing the human ACE2 receptor is more similar to Delta. This recombinant provides a unique and natural opportunity to better understand the genotype to phenotype links in SARS-CoV-2.

10.
Euro Surveill ; 27(13)2022 03.
Article in English | MEDLINE | ID: covidwho-1775606

ABSTRACT

Since the first reports in summer 2020, SARS-CoV-2 reinfections have raised concerns about the immunogenicity of the virus, which will affect SARS-CoV-2 epidemiology and possibly the burden of COVID-19 on our societies in the future. This study provides data on the frequency and characteristics of possible reinfections, using the French national COVID-19 testing database. The Omicron variant had a large impact on the frequency of possible reinfections in France, which represented 3.8% of all confirmed COVID-19 cases since December 2021.


Subject(s)
COVID-19 , SARS-CoV-2 , COVID-19/epidemiology , COVID-19 Testing , Humans , Reinfection
11.
EuropePMC; 2022.
Preprint in English | EuropePMC | ID: ppcovidwho-331250

ABSTRACT

In Dec 2021-Feb 2022, an intense and unprecedented co-circulation of SARS-CoV-2 variants with high genetic diversity raised the question of possible co-infections between variants and how to detect them. Using 11 mixes of Delta:Omicron isolates at different ratios, we evaluated the performance of 4 different sets of primers used for whole-genome sequencing and we developed an unbiased bioinformatics method which can detect all co-infections irrespective of the SARS-CoV-2 lineages involved. Applied on 21,387 samples collected between weeks 49-2021 and 08-2022 from random genomic surveillance in France, we detected 53 co-infections between different lineages. The prevalence of Delta and Omicron (BA.1) co-infections and Omicron lineages BA.1 and BA.2 co-infections were estimated at 0.18% and 0.26%, respectively. Among 6,242 hospitalized patients, the intensive care unit (ICU) admission rates were 1.64%, 4.81% and 15.38% in Omicron, Delta and Delta/Omicron patients, respectively. No BA.1/BA.2 co-infections were reported among ICU admitted patients. Although SARS-CoV-2 co-infections were rare in this study, their proper detection is crucial to evaluate their clinical impact and the risk of the emergence of potential recombinants.

12.
EuropePMC; 2022.
Preprint in English | EuropePMC | ID: ppcovidwho-329746

ABSTRACT

We report evidence of Delta/Omicron SARS-CoV-2 co-infections during the fifth wave of COVID-19 pandemics in France for 7 immunocompetent and epidemiologically unrelated patients. These co-infections were detected by PCR assays targeting SARS-CoV-2 S-gene mutations K417N and L452R and confirmed by whole genome sequencing which allowed the proportion estimation of each subpopulation. For 2 patients, the analyses of longitudinal samples collected 7 to 11 days apart showed that Delta or Omicron can outcompete the other variant during dual infection.

14.
EuropePMC;
Preprint in English | EuropePMC | ID: ppcovidwho-327361

ABSTRACT

High viral load in upper respiratory tract specimens observed for Delta cases may contributed to its increased infectivity compared to the Alpha variant. Herein, we showed that the RT-PCR Ct values in Health Care Workers sampled within five days after symptom onset were significantly higher for Omicron cases than Delta cases (+2.84 Ct, p=0.008). This result comfort the studies showing that the increased transmissibility of Omicron is related to other mechanisms than higher virus excretion.

15.
EuropePMC; 2020.
Preprint in English | EuropePMC | ID: ppcovidwho-319836

ABSTRACT

Quantifying the effectiveness of large-scale non-pharmaceutical interventions (NPIs) against COVID-19 is critical to adapting responses against future waves of the pandemic. Most studies of NPIs thus far have relied on epidemiological data. Here, we report the impact of NPIs on the evolution of SARS-CoV-2, taking the perspective of the virus. We examined how variations through time and space of SARS-CoV-2 genomic divergence rates, which reflect variations of the epidemic reproduction number Rt, can be explained by NPIs and combinations thereof. Based on the analysis of 5,198 SARS-CoV-2 genomes from 57 countries along with a detailed chronology of 9 non-pharmaceutical interventions during the early epidemic phase up to May 2020, we find that home containment (35% Rt reduction) and education lockdown (26%) had the strongest predicted effectiveness. To estimate the cumulative effect of NPIs, we modelled the probability of reducing Rt below 1, which is required to stop the epidemic, for various intervention combinations and initial Rt values. In these models, no intervention implemented alone was sufficient to stop the epidemic for Rt’s above 2 and all interventions combined were required for Rt’s above 3. Our approach can help inform decisions on the minimal set of NPIs required to control the epidemic depending on the current Rt value.

16.
O'Toole, Áine, Hill, Verity, Pybus, Oliver, Watts, Alexander, Bogoch, Issac, Khan, Kamran, Messina, Jane, Tegally, Houriiyah, Lessells, Richard, Giandhari, Jennifer, Pillay, Sureshnee, Tumedi, Kefentse Arnold, Nyepetsi, Gape, Kebabonye, Malebogo, Matsheka, Maitshwarelo, Mine, Madisa, Tokajian, Sima, Hassan, Hamad, Salloum, Tamara, Merhi, Georgi, Koweyes, Jad, Geoghegan, Jemma, de Ligt, Joep, Ren, Xiaoyun, Storey, Matthew, Freed, Nikki, Pattabiraman, Chitra, Prasad, Pramada, Desai, Anita, Vasanthapuram, Ravi, Schulz, Thomas, Steinbrück, Lars, Stadler, Tanja, Parisi, Antonio, Bianco, Angelica, García de Viedma, Darío, Buenestado-Serrano, Sergio, Borges, Vítor, Isidro, Joana, Duarte, Sílvia, Gomes, João Paulo, Zuckerman, Neta, Mandelboim, Michal, Mor, Orna, Seemann, Torsten, Arnott, Alicia, Draper, Jenny, Gall, Mailie, Rawlinson, William, Deveson, Ira, Schlebusch, Sanmarié, McMahon, Jamie, Leong, Lex, Lim, Chuan Kok, Chironna, Maria, Loconsole, Daniela, Bal, Antonin, Josset, Laurence, Holmes, Edward, St. George, Kirsten, Lasek-Nesselquist, Erica, Sikkema, Reina, Oude Munnink, Bas, Koopmans, Marion, Brytting, Mia, Sudha rani, V.; Pavani, S.; Smura, Teemu, Heim, Albert, Kurkela, Satu, Umair, Massab, Salman, Muhammad, Bartolini, Barbara, Rueca, Martina, Drosten, Christian, Wolff, Thorsten, Silander, Olin, Eggink, Dirk, Reusken, Chantal, Vennema, Harry, Park, Aekyung, Carrington, Christine, Sahadeo, Nikita, Carr, Michael, Gonzalez, Gabo, de Oliveira, Tulio, Faria, Nuno, Rambaut, Andrew, Kraemer, Moritz, The, Covid-Genomics U. K. consortium, Network for Genomic Surveillance in South, Africa, Brazil, U. K. Cadde Genomic Network, Swiss Viollier Sequencing, Consortium, Diego, Search Alliance San, National Virus Reference, Laboratory, Seq, Covid Spain, Danish Covid-19 Genome, Consortium, Communicable Diseases Genomic, Network, Dutch National, Sars-CoV-surveillance program, Division of Emerging Infectious, Diseases.
EuropePMC; 2021.
Preprint in English | EuropePMC | ID: ppcovidwho-318194

ABSTRACT

Late in 2020, two genetically-distinct clusters of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) with mutations of biological concern were reported, one in the United Kingdom and one in South Africa. Using a combination of data from routine surveillance, genomic sequencing and international travel we track the international dispersal of lineages B.1.1.7 and B.1.351 (variant 501Y-V2). We account for potential biases in genomic surveillance efforts by including passenger volumes from location of where the lineage was first reported, London and South Africa respectively. Using the software tool grinch (global report investigating novel coronavirus haplotypes), we track the international spread of lineages of concern with automated daily reports, Further, we have built a custom tracking website (cov-lineages.org/global_report.html) which hosts this daily report and will continue to include novel SARS-CoV-2 lineages of concern as they are detected.

17.
EuropePMC; 2021.
Preprint in English | EuropePMC | ID: ppcovidwho-316368

ABSTRACT

Introduction: End stage kidney disease (ESKD) and cancer have been identified as risk factors for severe and fatal cases of COVID-19, making vaccination in these patients a priority. Patients suffering from ESKD have a significantly weaker response to common vaccines than general population. However, humoral and cellular immune responses after two doses of RNA-based vaccine BNT162b2 (Pfizer–BioNTech) have been poorly explored in this vulnerable population.Case presentationA 69-year-old male patient was followed for ESKD and myeloma. He developed a severe SARS-CoV-2 pneumonia twenty days after two doses of BNT162b2 vaccine. Whole genome sequencing found that the virus belonged to the 20I/501Y.V1 clade. A serology draws eight days after the 2 nd vaccine dose showed positive RBD IgG without neutralizing activity. A serum specimen sampled thirty days after the onset of SARS-CoV-2 infection showed seroconversion against both RBD and N antigens. This specimen was shown to exhibit a frank neutralizing activity. The QuantiFERON® SARS-CoV-2 (Qiagen) showed a positive specific cellular response although the QuantiFERON monitor displayed a weak cellular response. ConclusionsImpaired immunity due to renal failure probably explain the severe pneumonia despite vaccination. The fact that the patient developpe a neutralizing activity and a cellular response after a third stimulation by infection may suggest to systemically administrate a third dose of vaccine in ESKD patients.

18.
Euro Surveill ; 26(45)2021 Nov.
Article in English | MEDLINE | ID: covidwho-1630353

ABSTRACT

We report a rapid increase in enterovirus D68 (EV-D68) infections, with 139 cases reported from eight European countries between 31 July and 14 October 2021. This upsurge is in line with the seasonality of EV-D68 and was presumably stimulated by the widespread reopening after COVID-19 lockdown. Most cases were identified in September, but more are to be expected in the coming months. Reinforcement of clinical awareness, diagnostic capacities and surveillance of EV-D68 is urgently needed in Europe.


Subject(s)
COVID-19 , Enterovirus D, Human , Enterovirus Infections , Enterovirus , Myelitis , Respiratory Tract Infections , Communicable Disease Control , Disease Outbreaks , Enterovirus D, Human/genetics , Enterovirus Infections/diagnosis , Enterovirus Infections/epidemiology , Europe/epidemiology , Humans , Myelitis/epidemiology , SARS-CoV-2
19.
EuropePMC; 2021.
Preprint in English | EuropePMC | ID: ppcovidwho-296527

ABSTRACT

Herein, we describe the characteristics of vaccine breakthrough infections (VBI) in fully vaccinated individuals according to five vaccine strategies during the Delta wave in France. Inclusion criterion was a positive test at least 2 weeks after a full vaccine schedule: homologous vaccination with Pfizer-BioNTech (BNT162b2) or Moderna (mRNA-1273);heterologous vaccination with Astrazeneca and Pfizer-BioNTech (ChadOx1/BNT162b2);single-dose vaccines Johnson & Johnson (Ad26.COV2.S) or Astrazeneca (ChadOx1). A total of 1630 VBI from patients fully vaccinated between February and July were included in this study. SARS-CoV-2 sequencing performed for 1366 samples showed that the delta variant represented 94.1% (1286/1366). Delta-VBI were mainly symptomatic (mild symptoms) with no difference according to the vaccine strategy (p=0.362). The median RT-PCR Ct values at diagnosis were significantly different between symptomatic and asymptomatic cases only for BNT162b2 group (17.7 (15.07, 20.51) vs 19.00 (16.00, 23.00), p=0.004). Up to 50% of VBI was classified as early-VBI (infected less than one month after full immunization) for BNT162b2, mRNA-1273, ChadOx1, and J Ad26.COV2.S. People aged 14-49 yo were overrepresented in early VBI compared to non-early VBI for BNT162b2 and mRNA-1273 (73.92% vs 37.87% for BNT162b2 and 77.78% vs 46.67 % for mRNA-1273, p<0.05). Our data emphasize a high prevalence of Delta-VBI occurring only one month after full immunization in young patients that might be related to relaxation of barrier gestures.

20.
2021.
Preprint in English | Other preprints | ID: ppcovidwho-294824

ABSTRACT

Background SARS-CoV-2 mutations appeared recently and can lead to conformational changes in the spike protein and probably induce modifications in antigenicity. In this study, we wanted to assess the neutralizing capacity of antibodies to prevent cell infection, using a live virus neutralisation test. Methods Sera samples were collected from different populations: two-dose vaccinated COVID-19-naïve healthcare workers (HCWs;Pfizer-BioNTech BNT161b2), 6-months post mild COVID-19 HCWs, and critical COVID-19 patients. We tested various clades such as 19A (initial one), 20B (B.1.1.241 lineage), 20I/501Y.V1 (B.1.1.7 lineage), and 20H/501Y.V2 (B.1.351 lineage). Results No significant difference was observed between the 20B and 19A isolates for HCWs with mild COVID-19 and critical patients. However, a significant decrease in neutralisation ability was found for 20I/501Y.V1 in comparison with 19A isolate for critical patients and HCWs 6-months post infection. Concerning 20H/501Y.V2, all populations had a significant reduction in neutralising antibody titres in comparison with the 19A isolate. Interestingly, a significant difference in neutralisation capacity was observed for vaccinated HCWs between the two variants whereas it was not significant for the convalescent groups. Conclusion Neutralisation capacity was slightly reduced for critical patients and HCWs 6-months post infection. No neutralisation escape could be feared concerning the two variants of concern in both populations. The reduced neutralising response observed towards the 20H/501Y.V2 in comparison with the 19A and 20I/501Y.V1 isolates in fully immunized subjects with the BNT162b2 vaccine is a striking finding of the study.

SELECTION OF CITATIONS
SEARCH DETAIL