Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 5 de 5
Add filters

Document Type
Year range
biorxiv; 2023.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2023.02.20.529243


Mutagenic antiviral drugs have shown promising results against multiple viruses, yet concerns have been raised about whether their use might promote the emergence of new and harmful viral variants. Here, we examine the genetic consequences of effective and suboptimal dosing of favipiravir and molnupiravir in the treatment of SARS-CoV-2 infection in a hamster model. We identify a dose-dependent effect upon the mutational load in a viral population, with molnupiravir having a greater potency than favipiravir per mg/kg of treatment. The emergence of de novo variants was largely driven by stochastic processes, with evidence of compensatory adaptation but not of the emergence of drug resistance or novel immune phenotypes. Effective doses for favipiravir and molunpiravir correspond to similar levels of mutational load. Combining both drugs had an increased impact on both efficacy and mutational load. Our results suggest the potential for mutational load to provide a marker for clinical efficacy.

medrxiv; 2021.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2021.04.12.21255084


The appearance of the SARS-CoV-2 lineage B.1.1.7 in the UK in late 2020, associated with faster transmission, sparked the need to find effective ways to monitor its spread. The set of mutations that characterise this lineage include a deletion in position 69 and 70 of the spike protein, which is known to be associated with Spike Gene Target Failure (SGTF) in a commonly used three gene diagnostic qPCR assay. The lower cost and faster turnaround times compared to whole genome sequencing make the use of qPCR for monitoring of the variant spread an attractive proposition. However, there are several potential issues with this approach. Here we use 826 SARS-CoV-2 samples collected in a hospital setting as part of the Hospital Onset COVID Infection (HOCI) study where qPCR was used for viral detection, followed by whole genome sequencing (WGS), to identify the factors to consider when using SGTF to infer lineage B.1.1.7 prevalence in a hospital setting, with potential implications for locations where this variant has recently been introduced.

medrxiv; 2020.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2020.11.18.20230599


While changes in SARS-CoV-2 viral load over time have been documented, detailed information on the impact of remdesivir and how it might alter intra-host viral evolution is limited. Sequential viral loads and deep sequencing of SARS-CoV-2 recovered from the upper respiratory tract of hospitalised children revealed that remdesivir treatment suppressed viral RNA levels in one patient but not in a second infected with an identical strain. Evidence of drug resistance to explain this difference was not found. Reduced levels of subgenomic (sg) RNA during treatment of the second patient, suggest an additional effect of remdesivir on viral replication that is independent of viral RNA levels. Haplotype reconstruction uncovered persistent SARS-CoV-2 variant genotypes in four patients. We conclude that these are likely to have arisen from within-host evolution, and not co-transmission, although superinfection cannot be excluded in one case. Sample-to-sample heterogeneity in the abundances of variant genotypes is best explained by the presence of discrete viral populations in the lung with incomplete population sampling in diagnostic swabs. Such compartmentalisation is well described in serious lung infections caused by influenza and Mycobacterium tuberculosis and has been associated with poor drug penetration, suboptimal treatment and drug resistance. Our data provide evidence that remdesivir is able to suppress SARS-CoV-2 replication in vivo but that its efficacy may be compromised by factors reducing penetration into the lung. Based on data from influenza and Mycobacterium tuberculosis lung infections we conclude that early use of remdesivir combined with other agents should now be evaluated. Summary SentenceDeep sequencing of longitudinal samples from SARS-CoV-2 infected paediatric patients identifies evidence of remdesivir-associated inhibition of viral replication in vivo and uncovers evidence of within host evolution of distinct viral genotypes.

Lung Diseases , Tuberculosis
medrxiv; 2020.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2020.08.20.20178699


SARS-CoV-2 viral loads change rapidly following symptom onset so to assess antivirals it is important to understand the natural history and patient factors influencing this. We undertook an individual patient-level meta-analysis of SARS-CoV-2 viral dynamics in humans to describe viral dynamics and estimate the effects of antivirals used to-date. This systematic review identified case reports, case series and clinical trial data from publications between 1/1/2020 and 31/5/2020 following PRISMA guidelines. A multivariable Cox proportional hazards regression model (Cox-PH) of time to viral clearance was fitted to respiratory and stool samples. A simplified four parameter nonlinear mixed-effects (NLME) model was fitted to viral load trajectories in all sampling sites and covariate modelling of respiratory viral dynamics was performed to quantify time dependent drug effects. Patient-level data from 645 individuals (age 1 month-100 years) with 6316 viral loads were extracted. Model-based simulations of viral load trajectories in samples from the upper and lower respiratory tract, stool, blood, urine, ocular secretions and breast milk were generated. Cox-PH modelling showed longer time to viral clearance in older patients, males and those with more severe disease. Remdesivir was associated with faster viral clearance (adjusted hazard ratio (AHR) = 9.19, p<0.001), as well as interferon, particularly when combined with ribavirin (AHR = 2.2, p=0.015; AHR = 6.04, p = 0.006). Combination therapy should be further investigated. A viral dynamic dataset and NLME model for designing and analysing antiviral trials has been established.

medrxiv; 2020.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2020.07.07.20148213


Generally, children and teenagers do not become seriously ill with COVID-19. However, in countries with high rates of coronavirus disease, children with the syndrome COVID-19 associated inflammation syndrome referred to as PIMS-TS have been reported. Similarities noted between SARS-CoV-2 Spike protein sequences and those of other super antigens has prompted the suggestion that this might be the mechanism by SARS-CoV-ST triggers PIMS-TS. It has also been suggested that the D614G variant found more commonly in the US and across European countries may explain why PIMS-TS appears to be common in these countries. Here we analysed viral sequences from 13 paediatric COVID-19 patients of whom five were diagnosed with PIMS-TS. This is the first characterisation of viruses from PIMS-TS patients. In contrast to what has been hypothesised, we found no evidence of unique sequences associated with the viruses from PIMS-TS patients.

COVID-19 , Inflammation , Coronavirus Infections , Severe Acute Respiratory Syndrome