Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 20
Filter
1.
biorxiv; 2023.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2023.01.16.524211

ABSTRACT

Children infected with SARS-CoV-2 rarely progress to respiratory failure, but the risk of mortality in infected people over 85 years of age remains high, despite vaccination and improving treatment options. Here, we take a comprehensive, multidisciplinary approach to investigate differences in the cellular landscape and function of paediatric (<11y), adult (30-50y) and elderly (>70y) nasal epithelial cells experimentally infected with SARS-CoV-2. Our data reveal that nasal epithelial cell subtypes show different tropism to SARS-CoV-2, correlating with age, ACE2 and TMPRSS2 expression. Ciliated cells are a viral replication centre across all age groups, but a distinct goblet inflammatory subtype emerges in infected paediatric cultures, identifiable by high expression of interferon stimulated genes and truncated viral genomes. In contrast, infected elderly cultures show a proportional increase in ITGB6hi progenitors, which facilitate viral spread and are associated with dysfunctional epithelial repair pathways. A video explaining this work can be found here - https://youtu.be/uExP4bx6D_A .


Subject(s)
Infections , Respiratory Insufficiency
2.
researchsquare; 2022.
Preprint in English | PREPRINT-RESEARCHSQUARE | ID: ppzbmed-10.21203.rs.3.rs-2335277.v1

ABSTRACT

Purpose:  COVID-19 infection in immunodeficient individuals can result in chronically poor health, persistent or relapsing SARS-CoV-2 PCR positivity, and long-term infectious potential. While clinical trials have demonstrated promising outcomes using anti-SARS-CoV-2 medicines in immunocompetent hosts, their ability to achieve sustained viral clearance in immunodeficient patients remains unknown. We therefore aimed to study longer term virological outcomes in patients treated at our centre. Methods: We followed up immunocompromised inpatients treated with casirivimab-imdevimab (Ronapreve) between September and December 2021, and immunocompromised patients who received sotrovimab, molnupiravir, nirmatrelvir/ritonavir (Paxlovid), or no treatment from December 2021 to March 2022. Nasopharyngeal swab and sputum samples were obtained either in hospital or in the community until sustained viral clearance, defined as 3 consecutive negative samples, was achieved. Positive samples were sequenced and analysed for mutations of interest. Results: We observed sustained viral clearance in 64 of 103 patients, none of whom died. Of the 39/103 patients where sustained clearance was not confirmed, 6 died (between 2 and 34 days from treatment). Notably, we observed 23 cases of sputum positivity despite negative NPS samples, as well as recurrence of SARS-CoV-2 positivity following a negative sample in 12 cases. Patients with viral clearance were then divided into those who cleared within 28 days and those with PCR positivity beyond 28 days. We noted lower B cell counts in the group with persistent PCR positivity (mean (SD) 0.08 (0.10) x109/L vs 0.22 (0.29) x109/L, p=0.01) as well as lower IgA (median (IQR) 0.00 (0.00-0.30) g/L vs 0.30 (0.00-0.90) g/L, p=0.03) and IgM (median (IQR) 0.10 (0.00-0.30) g/L vs 0.30 (0.10-0.75) g/L, p=0.007). No differences were seen in CD4+ or CD8+ T cell counts. Antiviral treatment did not impact risk of persistent PCR positivity. Conclusion: Persistent SARS-CoV-2 PCR positivity is common among immunodeficient individuals, especially those with antibody deficiencies, regardless of anti-viral treatment. Peripheral B cell count and serum IgA and IgM levels are predictors of viral persistence.


Subject(s)
Immunologic Deficiency Syndromes
4.
medrxiv; 2022.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2022.08.30.22279427

ABSTRACT

PurposeTo conduct a process evaluation of a whole genome sequence report form (SRF) used to reduce nosocomial SARS-CoV-2 through changing infection prevention and control (IPC) behaviours. Here using qualitative behavioural analyses we report how the SRF worked. MethodsPrior to a multisite non-randomised trial of its effectiveness, the SRF was coded in relation to its putative behaviour change content (using the theoretical domains framework (TDF), the behaviour change wheel (BCW) and the behaviour change technique taxonomy (BCTTv1)). After the SRF had been used, through the peak of the Alpha variant, we conducted in-depth interviews from diverse professional staff (N=39) from a heterogeneous purposive sub-sample of hospital trial sites (n=5/14). Deductive thematic analysis explored participants accounts of using the SRF according to its putative content in addition to inductive exploration of their experiences. ResultsWe found empirical support for the putative theoretical mechanisms of Knowledge and Behavioural regulation, as well as for intervention functions of Education and Persuasion and Enablement, and for particular BCTs 1.2 Problem solving, 2.6 Biofeedback, 2.7 Feedback on outcomes of behaviour, and 7.1 Prompts and cues. Most participants found the SRF useful and believed it could shape IPC behaviour. ConclusionsOur process evaluation of the SRF provided granular and general support for the SRF working to change IPC behaviours. Our analysis highlighted useful SRF content. However, we also note that, without complementary work on systematically embedding the SRF within routine practice and wider hospital systems, it may not reach its full potential to reduce nosocomial infection. What is already known on this subject?O_LIHealth psychology remains under-exploited within infection prevention and control (IPC) interventions C_LIO_LIFor genomic insights to be understood by a range of health care professionals and elicit changes in IPC behaviour, ways of translating complex genomic insights into a simple format are needed. These simple translation tools can be described as whole genome sequence report forms (SRFs) C_LIO_LINothing is currently known about the use of SRFs, for SARS-CoV-2 or other infections, to change hospital-based IPC behaviour. C_LIO_LIHealth psychological tools such as the behaviour change wheel (BCW), the theoretical domains framework (TDF), and the behaviour change technique taxonomy (BCTTv1) are widely used to develop behaviour change interventions but are rarely used to evaluate them C_LIO_LIContemporary guidance on conducting process evaluations highlights the value of explicitly theorising how an intervention is intended to work before systematically examining how it actually worked in practice C_LI What does this study add?O_LIThe paper presents a novel worked example of using tools from health psychology within a qualitative process evaluation of using an SRF during the COVID-19 pandemic in UK hospitals C_LIO_LIThis paper is the first to report how people experienced using whole genome sequence report forms (SRFs) in order to change hospital-based IPC behaviour C_LIO_LIWe provide qualitative evidence detailing empirical support for much of the SRFs putative content, including casual mechanisms Knowledge and Behavioural regulation, intervention functions such as Education and Enablement, and for particular BCTs: 1.2 Problem solving, 2.6 Biofeedback, 2.7 Feedback on outcomes of behaviour, and 7.1 Prompts and cues C_LI


Subject(s)
Cross Infection
5.
researchsquare; 2022.
Preprint in English | PREPRINT-RESEARCHSQUARE | ID: ppzbmed-10.21203.rs.3.rs-1895370.v1

ABSTRACT

Since the first reports of hepatitis of unknown aetiology occurring in UK children, over 1000 cases have been reported worldwide, including 268 cases in the UK, with the majority younger than 6 years old. Using genomic, proteomic and immunohistochemical methods, we undertook extensive investigation of 28 cases and 136 control subjects. In five cases who underwent liver transplantation, we detected high levels of adeno-associated virus 2 (AAV2) in the explanted livers. AAV2 was also detected at high levels in blood from 10/11 non-transplanted cases. Low levels of Adenovirus (HAdV) and Human Herpesvirus 6B (HHV-6B), both of which enable AAV2 lytic replication, were also found in the five explanted livers and blood from 15/17 and 6/9 respectively, of the 23 non-transplant cases tested. In contrast, AAV2 was detected at low titre in 6/100 whole bloods from child controls from cohorts with presence or absence of hepatitis and/or adenovirus infection. Our data show an association of AAV2 at high titre in blood or liver tissue, with unexplained hepatitis in children infected in the recent HAdV-F41 outbreak. We were unable to find evidence by electron microscopy, immunohistochemistry or proteomics of HAdV or AAV2 viral particles or proteins in explanted livers, suggesting that hepatic pathology is not due to direct lytic infection by either virus. The potential that AAV2, although not previously associated with disease, may, together with HAdV-F41 and/or HHV-6, be causally implicated in the outbreak of unexplained hepatitis, requires further investigation.


Subject(s)
Adenoviridae Infections , Hepatitis
6.
medrxiv; 2022.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2022.06.15.22276423

ABSTRACT

Structured summary Background Whole genome sequencing (WGS) for managing healthcare associated infections (HCAIs) has developed considerably through experiences with SARS-CoV-2. We interviewed various healthcare professionals (HCPs) with direct experience of using WGS in hospitals (within the COG-UK Hospital Onset COVID-19 Infection (HOCI) study) to explore its acceptability and future use. Method An exploratory, cross-sectional, qualitative design employed semi-structured interviews with 39 diverse HCPs between December 2020 and June 2021. Participants were recruited from five sites within the larger clinical study of a novel genome sequencing reporting tool for SARS-CoV-2 (the HOCI study). All had experience, in their diverse roles, of using sequencing data to manage nosocomial SARS-CoV-2 infection. Deductive and inductive thematic analysis identified themes exploring aspects of the acceptability of sequencing. Findings The analysis highlighted the overall acceptability of rapid WGS for infectious disease using SARS-CoV-2 as a case study. Diverse professionals were largely very positive about its future use and believed that it could become a valuable and routine tool for managing HCAIs. We identified three key themes ‘1) ‘Proof of concept achieved’; 2) ‘Novel insights and implications’; and 3) ‘Challenges and demands’. Conclusion Our qualitative analysis, drawn from five diverse hospitals, shows the broad acceptability of rapid sequencing and its potential. Participants believed it could and should become an everyday technology capable of being embedded within typical hospital processes and systems. However, its future integration into existing healthcare systems will not be without challenges (e.g., resource, multi-level change) warranting further mixed methods research.


Subject(s)
Cross Infection , Communicable Diseases
7.
biorxiv; 2022.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2022.06.07.495142

ABSTRACT

Accurate inference of who infected whom in an infectious disease outbreak is critical for the delivery of effective infection prevention and control. The increased resolution of pathogen whole-genome sequencing has significantly improved our ability to infer transmission events. Despite this, transmission inference often remains limited by the lack of genomic variation between the source case and infected contacts. Although within-host genetic diversity is common among a wide variety of pathogens, conventional whole-genome sequencing phylogenetic approaches to reconstruct outbreaks exclusively use consensus sequences, which consider only the most prevalent nucleotide at each position and therefore fail to capture low frequency variation within samples. We hypothesized that including within-sample variation in a phylogenetic model would help to identify who infected whom in instances in which this was previously impossible. Using whole-genome sequences from SARS-CoV-2 multi-institutional outbreaks as an example, we show how within-sample diversity is stable among repeated serial samples from the same host, is transmitted between those cases with known epidemiological links, and how this improves phylogenetic inference and our understanding of who infected whom. Our technique is applicable to other infectious diseases and has immediate clinical utility in infection prevention and control.


Subject(s)
Communicable Diseases
8.
medrxiv; 2022.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2022.02.11.22270775

ABSTRACT

Background: Early antiviral treatment is effective for COVID-19 but currently available agents are expensive. Favipiravir is routinely used in many countries, but efficacy is unproven. Antiviral combinations have not been systematically studied. We aimed to evaluate the effect of favipiravir, lopinavir-ritonavir or the combination of both agents on SARS-CoV-2 viral load trajectory when administered early. Methods: We conducted a Phase 2, proof of principle, randomised, placebo-controlled, 2x2 factorial, double-blind trial of outpatients with early COVID-19 (within 7 days of symptom onset) at two sites in the United Kingdom. Participants were randomised using a centralised online process to receive: favipiravir (1800mg twice daily on Day 1 followed by 400mg four times daily on Days 2-7) plus lopinavir-ritonavir (400mg/100mg twice daily on Day 1, followed by 200mg/50mg four times daily on Days 2-7); favipiravir plus lopinavir-ritonavir placebo; lopinavir-ritonavir plus favipiravir placebo; or both placebos. The primary outcome was SARS-CoV-2 viral load at Day 5, accounting for baseline viral load. ClinicalTrials.gov: NCT04499677. Findings: Between 6 October 2020 and 4 November 2021, we recruited 240 participants. For the favipiravir+lopinavir-ritonavir, favipiravir+placebo, lopinavir-ritonavir+placebo and placebo-only arms, we recruited 61, 59, 60 and 60 participants and analysed 55, 56, 55 and 58 participants respectively who provided viral load measures at Day 1 and Day 5. In the primary analysis, the mean viral load in the favipiravir+placebo arm had decreased by 0.57 log10 (95% CI -1.21 to 0.07, p=0.08) and in the lopinavir-ritonavir+placebo arm by 0.18 log10 (95% CI -0.82 to 0.46, p=0.58) more than in the placebo arm at Day 5. There was no significant interaction between favipiravir and lopinavir-ritonavir (interaction coefficient term: 0.59 log10, 95% CI -0.32 to 1.50, p=0.20). More participants had undetectable virus at Day 5 in the favipiravir+placebo arm compared to placebo only (46.3% vs 26.9%, odds ratio (OR): 2.47, 95% CI 1.08 to 5.65; p=0.03). Adverse events were observed more frequently with lopinavir-ritonavir, mainly gastrointestinal disturbance. Favipiravir drug levels were lower in the combination arm than the favipiravir monotherapy arm. Interpretation: At the current doses, no treatment significantly reduced viral load in the primary analysis. Favipiravir requires further evaluation with consideration of dose escalation. Lopinavir-ritonavir administration was associated with lower plasma favipiravir concentrations.


Subject(s)
Gastrointestinal Diseases
9.
medrxiv; 2022.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2022.02.10.22270799

ABSTRACT

Introduction Viral sequencing of SARS-CoV-2 has been used for outbreak investigation, but there is limited evidence supporting routine use for infection prevention and control (IPC) within hospital settings. Methods We conducted a prospective non-randomised trial of sequencing at 14 acute UK hospital trusts. Sites each had a 4-week baseline data-collection period, followed by intervention periods comprising 8 weeks of 'rapid' (<48h) and 4 weeks of 'longer-turnaround' (5-10 day) sequencing using a sequence reporting tool (SRT). Data were collected on all hospital onset COVID-19 infections (HOCIs; detected [≥]48h from admission). The impact of the sequencing intervention on IPC knowledge and actions, and on incidence of probable/definite hospital-acquired infections (HAIs) was evaluated. Results A total of 2170 HOCI cases were recorded from October 2020-April 2021, with sequence reports returned for 650/1320 (49.2%) during intervention phases. We did not detect a statistically significant change in weekly incidence of HAIs in longer-turnaround (IRR 1.60, 95%CI 0.85-3.01; P=0.14) or rapid (0.85, 0.48-1.50; P=0.54) intervention phases compared to baseline phase. However, IPC practice was changed in 7.8% and 7.4% of all HOCI cases in rapid and longer-turnaround phases, respectively, and 17.2% and 11.6% of cases where the report was returned. In a per-protocol sensitivity analysis there was an impact on IPC actions in 20.7% of HOCI cases when the SRT report was returned within 5 days. Conclusion While we did not demonstrate a direct impact of sequencing on the incidence of nosocomial transmission, our results suggest that sequencing can inform IPC response to HOCIs, particularly when returned within 5 days.

10.
medrxiv; 2021.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2021.07.09.21260277

ABSTRACT

Background: To reduce the coronavirus disease burden in England, along with many other countries, the Government implemented a package of non-pharmaceutical interventions (NPIs) that have also impacted other transmissible infectious diseases such as norovirus. It is unclear what future norovirus disease incidence is likely to look like upon lifting these restrictions. Methods: Here we use a mathematical model of norovirus fitted to community incidence data in England to project forward expected incidence based on contact surveys that have been collected throughout 2020-2021. Results: We report that susceptibility to norovirus infection has likely increased between March 2020 to mid-2021. Depending upon assumptions of future contact patterns incidence of norovirus that is similar to pre-pandemic levels or an increase beyond what has been previously reported is likely to occur once restrictions are lifted. Should adult contact patterns return to 80% of pre-pandemic levels the incidence of norovirus will be similar to previous years. If contact patterns return to pre-pandemic levels there is a potential for the expected annual incidence to be up to 2-fold larger than in a typical year. The age-specific incidence is similar across all ages. Conclusions: Continued national surveillance for endemic diseases such as norovirus will be essential after NPIs are lifted to allow healthcare services to adequately prepare for a potential increase in cases and hospital pressures beyond what is typically experienced.


Subject(s)
Disease Models, Animal , Coronavirus Infections
11.
medrxiv; 2021.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2021.06.24.21259107

ABSTRACT

Background Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) lineage B.1.1.7 has been associated with an increased rate of transmission and disease severity among subjects testing positive in the community. Its impact on hospitalised patients is less well documented. Methods We collected viral sequences and clinical data of patients admitted with SARS-CoV-2 and hospital-onset COVID-19 infections (HOCIs), sampled 16/11/2020 - 10/01/2021, from eight hospitals participating in the COG-UK-HOCI study. Associations between the variant and the outcomes of all-cause mortality and intensive therapy unit (ITU) admission were evaluated using mixed effects Cox models adjusted by age, sex, comorbidities, care home residence, pregnancy and ethnicity. Results Sequences were obtained from 2341 inpatients (HOCI cases = 786) and analysis of clinical outcomes was carried out in 2147 inpatients with all data available. The hazard ratio (HR) for mortality of B.1.1.7 compared to other lineages was 1.01 (95% CI 0.79-1.28, P=0.94) and for ITU admission was 1.01 (95% CI 0.75-1.37, P=0.96). Analysis of sex-specific effects of B.1.1.7 identified increased risk of mortality (HR 1.30, 95% CI 0.95-1.78) and ITU admission (HR 1.82, 95% CI 1.15-2.90) in females infected with the variant but not males (mortality HR 0.82, 95% CI 0.61-1.10; ITU HR 0.74, 95% CI 0.52-1.04). Conclusions In common with smaller studies of patients hospitalised with SARS-CoV-2 we did not find an overall increase in mortality or ITU admission associated with B.1.1.7 compared to other lineages. However, women with B.1.1.7 may be at an increased risk of admission to intensive care and at modestly increased risk of mortality.


Subject(s)
Coronavirus Infections
12.
medrxiv; 2021.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2021.04.13.21255342

ABSTRACT

IntroductionNosocomial transmission of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been a significant cause of mortality in National Health Service (NHS) hospitals during the coronavirus disease 2019 (COVID-19) pandemic. The aim of this study is to evaluate the impact of rapid whole genome sequencing of SARS-CoV-2, supported by a novel probabilistic reporting methodology, to inform infection prevention and control (IPC) practice within NHS hospital settings. Methods and analysisCOG-UK HOCI (COG-UK Consortium Hospital-Onset COVID-19 Infections study) is a multicentre, prospective, interventional, superiority study. Eligible patients must be admitted to hospital with first confirmed SARS-CoV-2 PCR positive test result >48h from time of admission, where COVID-19 diagnosis was not suspected upon admission. The projected sample size for 14 participating sites covering all study phases over winter-spring 2020/2021 in the United Kingdom is 2,380 patients. The intervention is the return of a sequence report, within 48 hours in one phase (rapid local lab) and within 5-10 days in a second phase (mimicking central lab use), comparing the viral genome from an eligible study participant with others within and outside the hospital site. The primary outcomes are the incidence of Public Health England (PHE)/IPC-defined SARS-CoV-2 hospital-acquired infection during the baseline and two interventional phases, and proportion of hospital-onset cases with genomic evidence of transmission linkage following implementation of the intervention where such linkage was not suspected by initial IPC investigation. Secondary outcomes include incidence of hospital outbreaks, with and without sequencing data; actual and desirable changes to IPC actions; periods of healthcare worker (HCW) absence. A process evaluation using qualitative interviews with HCWs will be conducted alongside the study and analysis, underpinned by iterative programme theory of the sequence report. Health economic analysis will be conducted to determine cost-benefit of the intervention, and whether this leads to economic advantages within the NHS setting. Ethics and disseminationThe protocol has been approved by the National Research Ethics Service Committee (Cambridge South 20/EE/0118). This manuscript is based on version 5.0 of the protocol. The study findings will be disseminated through peer-reviewed publications. Study Registration numberISRCTN50212645 Strengths and limitations of this studyO_LIThe COG-UK HOCI study harnesses the infrastructure of the UKs existing national COVID-19 genome sequencing platform to evaluate the specific benefit of sequencing to hospital infection control. C_LIO_LIThe evaluation is thought to be the first interventional study globally to assess effectiveness of genomic sequencing for infection control in an unbiased patient selection in secondary care settings. C_LIO_LIA range of institutional settings will participate, from specialist NHS-embedded or academic centres experienced in using pathogen genomics to district general hospitals. C_LIO_LIThe findings are likely to have wider applicability in future decisions to utilise genome sequencing for infection control of other pathogens (such as influenza, respiratory syncytial virus, norovirus, clostridium difficile and antimicrobial resistant pathogens) in secondary care settings. C_LIO_LIThe study has been awarded UK NIHR Urgent Public Health status, ensuring prioritised access to NIHR Clinical Research Network (CRN) research staff to recruit patients. C_LIO_LIThe study does not have a randomised controlled design due to the logistics of managing this against diverse standard practice. C_LI

13.
medrxiv; 2021.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2021.04.12.21255084

ABSTRACT

The appearance of the SARS-CoV-2 lineage B.1.1.7 in the UK in late 2020, associated with faster transmission, sparked the need to find effective ways to monitor its spread. The set of mutations that characterise this lineage include a deletion in position 69 and 70 of the spike protein, which is known to be associated with Spike Gene Target Failure (SGTF) in a commonly used three gene diagnostic qPCR assay. The lower cost and faster turnaround times compared to whole genome sequencing make the use of qPCR for monitoring of the variant spread an attractive proposition. However, there are several potential issues with this approach. Here we use 826 SARS-CoV-2 samples collected in a hospital setting as part of the Hospital Onset COVID Infection (HOCI) study where qPCR was used for viral detection, followed by whole genome sequencing (WGS), to identify the factors to consider when using SGTF to infer lineage B.1.1.7 prevalence in a hospital setting, with potential implications for locations where this variant has recently been introduced.

14.
ssrn; 2020.
Preprint in English | PREPRINT-SSRN | ID: ppzbmed-10.2139.ssrn.3739808

ABSTRACT

Background: Antibodies to Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) have been shown to neutralize the virus in-vitro and prevent disease in animal challenge models upon re-exposure. However, current understanding of SARS-CoV-2 humoral dynamics and longevity is conflicting.Methods: The Co-Stars study prospectively enrolled 3679 healthcare workers to comprehensively characterize the kinetics of SARS-CoV-2 spike (S), receptor-binding-domain (RBD) and nucleoprotein (N) antibodies in parallel. Participants screening seropositive had serial monthly serological testing for maximum 7 months with the Mesoscale Discovery Assay. Survival analysis determined the proportion of sero-reversion while two hierarchical Gamma models predicted the upper- and lower-bounds of long-term antibody trajectory.Results: A total of 1163 monthly samples were provided from 349 seropositive participants. At 200 days post-symptoms, 99% of participants had detectable S-antibodies compared to 75% with detectable N-antibodies. S-antibody was predicted to remain detectable in 95% of participants until 465 days [95%CI 370-575] using a ‘continuous-decay’ model and indefinitely using a ‘decay-to-plateau’ model to account for antibody secretion by long-lived plasma cells. S-antibody titers correlated strongly with surrogate neutralization in-vitro (R2=0.72). N-antibodies, however, decayed rapidly with a half-life of 60 days [95%CI 52-68].Conclusions: The Co-STAR's study data presented here provides evidence for long-term persistence of neutralizing S-antibodies. This has important implications for the duration of functional immunity following SARS-CoV-2 infection. In contrast, the rapid decay of N-antibodies must be considered in future seroprevalence studies and public health decision-making. This is the first study to establish a mathematical framework capable of predicting long-term humoral dynamics following SARS-CoV-2 infection.Trial Registration: NCT04380896.Funding Statement: GOSH charity, Wellcome Trust (201470/Z/16/Z and 220565/Z/20/Z). GOSH NIHR Funded Biomedical Research Centre.Declaration of Interests: The authors have declared that no competing interests exist.Ethics Approval Statement: This study was approved by the UK Health Research Authority (www.hra.nhs.uk). Written informed consent was obtained from all participants before recruitment to the study.


Subject(s)
Severe Acute Respiratory Syndrome
15.
medrxiv; 2020.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2020.11.20.20235697

ABSTRACT

Background: Antibodies to Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) have been shown to neutralize the virus in-vitro. Similarly, animal challenge models suggest that neutralizing antibodies isolated from SARS-CoV-2 infected individuals prevent against disease upon re-exposure to the virus. Understanding the nature and duration of the antibody response following SARS-CoV-2 infection is therefore critically important. Methods: Between April and October 2020 we undertook a prospective cohort study of 3555 healthcare workers in order to elucidate the duration and dynamics of antibody responses following infection with SARS-CoV-2. After a formal performance evaluation against 169 PCR confirmed cases and negative controls, the Meso-Scale Discovery assay was used to quantify in parallel, antibody titers to the SARS-CoV-2 nucleoprotein (N), spike (S) protein and the receptor-binding-domain (RBD) of the S-protein. All seropositive participants were followed up monthly for a maximum of 7 months; those participants that were symptomatic, with known dates of symptom-onset, seropositive by the MSD assay and who provided 2 or more monthly samples were included in the analysis. Survival analysis was used to determine the proportion of sero-reversion (switching from positive to negative) from the raw data. In order to predict long-term antibody dynamics, two hierarchical longitudinal Gamma models were implemented to provide predictions for the lower bound (continuous antibody decay to zero, 'Gamma-decay') and upper bound (decay-to-plateau due to long lived plasma cells, 'Gamma-plateau') long-term antibody titers. Results: A total of 1163 samples were provided from 349 of 3555 recruited participants who were symptomatic, seropositive by the MSD assay, and were followed up with 2 or more monthly samples. At 200 days post symptom onset, 99% of participants had detectable S-antibody whereas only 75% of participants had detectable N-antibody. Even under our most pessimistic assumption of persistent negative exponential decay, the S-antibody was predicted to remain detectable in 95% of participants until 465 days [95% CI 370-575] after symptom onset. Under the Gamma-plateau model, the entire posterior distribution of S-antibody titers at plateau remained above the threshold for detection indefinitely. Surrogate neutralization assays demonstrated a strong positive correlation between antibody titers to the S-protein and blocking of the ACE-2 receptor in-vitro [R2=0.72, p<0.001]. By contrast, the N-antibody waned rapidly with a half-life of 60 days [95% CI 52-68]. Discussion: This study has demonstrated persistence of the spike antibody in 99% of participants at 200 days following SARS-CoV-2 symptoms and rapid decay of the nucleoprotein antibody. Diagnostic tests or studies that rely on the N-antibody as a measure of seroprevalence must be interpreted with caution. Our lowest bound prediction for duration of the spike antibody was 465 days and our upper bound predicted spike antibody to remain indefinitely in line with the long-term seropositivity reported for SARS-CoV infection. The long-term persistence of the S-antibody, together with the strong positive correlation between the S-antibody and viral surrogate neutralization in-vitro, has important implications for the duration of functional immunity following SARS-CoV-2 infection.


Subject(s)
Severe Acute Respiratory Syndrome
16.
medrxiv; 2020.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2020.11.18.20230599

ABSTRACT

While changes in SARS-CoV-2 viral load over time have been documented, detailed information on the impact of remdesivir and how it might alter intra-host viral evolution is limited. Sequential viral loads and deep sequencing of SARS-CoV-2 recovered from the upper respiratory tract of hospitalised children revealed that remdesivir treatment suppressed viral RNA levels in one patient but not in a second infected with an identical strain. Evidence of drug resistance to explain this difference was not found. Reduced levels of subgenomic (sg) RNA during treatment of the second patient, suggest an additional effect of remdesivir on viral replication that is independent of viral RNA levels. Haplotype reconstruction uncovered persistent SARS-CoV-2 variant genotypes in four patients. We conclude that these are likely to have arisen from within-host evolution, and not co-transmission, although superinfection cannot be excluded in one case. Sample-to-sample heterogeneity in the abundances of variant genotypes is best explained by the presence of discrete viral populations in the lung with incomplete population sampling in diagnostic swabs. Such compartmentalisation is well described in serious lung infections caused by influenza and Mycobacterium tuberculosis and has been associated with poor drug penetration, suboptimal treatment and drug resistance. Our data provide evidence that remdesivir is able to suppress SARS-CoV-2 replication in vivo but that its efficacy may be compromised by factors reducing penetration into the lung. Based on data from influenza and Mycobacterium tuberculosis lung infections we conclude that early use of remdesivir combined with other agents should now be evaluated. Summary SentenceDeep sequencing of longitudinal samples from SARS-CoV-2 infected paediatric patients identifies evidence of remdesivir-associated inhibition of viral replication in vivo and uncovers evidence of within host evolution of distinct viral genotypes.


Subject(s)
Lung Diseases , Tuberculosis
17.
medrxiv; 2020.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2020.08.20.20178699

ABSTRACT

SARS-CoV-2 viral loads change rapidly following symptom onset so to assess antivirals it is important to understand the natural history and patient factors influencing this. We undertook an individual patient-level meta-analysis of SARS-CoV-2 viral dynamics in humans to describe viral dynamics and estimate the effects of antivirals used to-date. This systematic review identified case reports, case series and clinical trial data from publications between 1/1/2020 and 31/5/2020 following PRISMA guidelines. A multivariable Cox proportional hazards regression model (Cox-PH) of time to viral clearance was fitted to respiratory and stool samples. A simplified four parameter nonlinear mixed-effects (NLME) model was fitted to viral load trajectories in all sampling sites and covariate modelling of respiratory viral dynamics was performed to quantify time dependent drug effects. Patient-level data from 645 individuals (age 1 month-100 years) with 6316 viral loads were extracted. Model-based simulations of viral load trajectories in samples from the upper and lower respiratory tract, stool, blood, urine, ocular secretions and breast milk were generated. Cox-PH modelling showed longer time to viral clearance in older patients, males and those with more severe disease. Remdesivir was associated with faster viral clearance (adjusted hazard ratio (AHR) = 9.19, p<0.001), as well as interferon, particularly when combined with ribavirin (AHR = 2.2, p=0.015; AHR = 6.04, p = 0.006). Combination therapy should be further investigated. A viral dynamic dataset and NLME model for designing and analysing antiviral trials has been established.

18.
medrxiv; 2020.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2020.07.16.20155663

ABSTRACT

Introduction: Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) specific antibodies have been shown to neutralize the virus in-vitro. Understanding antibody dynamics following SARS-CoV-2 infection is therefore crucial. Sensitive measurement of SARS-CoV-2 antibodies is also vital for large seroprevalence surveys which inform government policies and public health interventions. However, rapidly waning antibodies following SARS-CoV-2 infection could jeopardize the sensitivity of serological testing on which these surveys depend. Methods: This prospective cohort study of SARS-CoV-2 humoral dynamics in a central London hospital analyzed 137 serial samples collected from 67 participants seropositive to SARS-CoV-2 by the Meso-Scale Discovery assay. Antibody titers were quantified to the SARS-CoV-2 nucleoprotein (N), spike (S-)protein and the receptor-binding-domain (RBD) of the S-protein. Titers were log-transformed and a multivariate log-linear model with time-since-infection and clinical variables was fitted by Bayesian methods. Results: The mean estimated half-life of the N-antibody was 52 days (95% CI 42-65). The S- and RBD-antibody had significantly longer mean half-lives of 81 days (95% CI 61-111) and 83 days (95% CI 55-137) respectively. An ACE-2-receptor competition assay demonstrated significant correlation between the S and RBD-antibody titers and ACE2-receptor blocking in-vitro. The time-to-a-negative N-antibody test for 50% of the seropositive population was predicted to be 195 days (95% CI 163-236). Discussion: After SARS-CoV-2 infection, the predicted half-life of N-antibody was 52 days with 50% of seropositive participants becoming seronegative to this antibody at 195 days. Widely used serological tests that depend on the N-antibody will therefore significantly underestimate the prevalence of infection following the majority of infections.


Subject(s)
Coronavirus Infections
19.
medrxiv; 2020.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2020.07.07.20148213

ABSTRACT

Generally, children and teenagers do not become seriously ill with COVID-19. However, in countries with high rates of coronavirus disease, children with the syndrome COVID-19 associated inflammation syndrome referred to as PIMS-TS have been reported. Similarities noted between SARS-CoV-2 Spike protein sequences and those of other super antigens has prompted the suggestion that this might be the mechanism by SARS-CoV-ST triggers PIMS-TS. It has also been suggested that the D614G variant found more commonly in the US and across European countries may explain why PIMS-TS appears to be common in these countries. Here we analysed viral sequences from 13 paediatric COVID-19 patients of whom five were diagnosed with PIMS-TS. This is the first characterisation of viruses from PIMS-TS patients. In contrast to what has been hypothesised, we found no evidence of unique sequences associated with the viruses from PIMS-TS patients.


Subject(s)
Severe Acute Respiratory Syndrome , Coronavirus Infections , Inflammation
20.
biorxiv; 2020.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2020.04.30.069039

ABSTRACT

Genomic surveillance has become a useful tool for better understanding virus pathogenicity, origin and spread. Obtaining accurately assembled, complete viral genomes directly from clinical samples is still a challenging. Here, we describe three protocols using a unique primer set designed to recover long reads of SARS-CoV-2 directly from total RNA extracted from clinical samples. This protocol is useful, accessible and adaptable to laboratories with varying resources and access to distinct sequencing methods: Nanopore, Illumina and/or Sanger.

SELECTION OF CITATIONS
SEARCH DETAIL