Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 5 de 5
Add filters

Document Type
Year range
biorxiv; 2022.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2022.03.30.486377


Coronaviruses use diverse Spike (S) glycoproteins to attach to host receptors and fuse with target cells. Using a broad screening approach, we isolated from SARS-CoV-2 immune donors seven monoclonal antibodies (mAbs) that bind to all human alpha and beta coronavirus S proteins. These mAbs recognize the fusion peptide and acquire high affinity and breadth through somatic mutations. Despite targeting a conserved motif, only some mAbs show broad neutralizing activity in vitro against alpha and beta coronaviruses, including Omicron BA.1 variant and bat WIV-1, and reduce viral titers and pathology in vivo. Structural and functional analyses show that the fusion peptide-specific mAbs bind with different modalities to a cryptic epitope which is concealed by prefusion-stabilizing 2P mutations and becomes exposed upon binding of ACE2 or ACE2-mimicking mAbs. This study identifies a new class of pan-coronavirus neutralizing mAbs and reveals a receptor-induced conformational change in the S protein that exposes the fusion peptide region.

Coronavirus Infections
biorxiv; 2021.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2021.12.12.472269


The recently emerged SARS-CoV-2 Omicron variant harbors 37 amino acid substitutions in the spike (S) protein, 15 of which are in the receptor-binding domain (RBD), thereby raising concerns about the effectiveness of available vaccines and antibody therapeutics. Here, we show that the Omicron RBD binds to human ACE2 with enhanced affinity relative to the Wuhan-Hu-1 RBD and acquires binding to mouse ACE2. Severe reductions of plasma neutralizing activity were observed against Omicron compared to the ancestral pseudovirus for vaccinated and convalescent individuals. Most (26 out of 29) receptor-binding motif (RBM)-directed monoclonal antibodies (mAbs) lost in vitro neutralizing activity against Omicron, with only three mAbs, including the ACE2-mimicking S2K146 mAb, retaining unaltered potency. Furthermore, a fraction of broadly neutralizing sarbecovirus mAbs recognizing antigenic sites outside the RBM, including sotrovimab, S2X259 and S2H97, neutralized Omicron. The magnitude of Omicron-mediated immune evasion and the acquisition of binding to mouse ACE2 mark a major SARS-CoV-2 mutational shift. Broadly neutralizing sarbecovirus mAbs recognizing epitopes conserved among SARS-CoV-2 variants and other sarbecoviruses may prove key to controlling the ongoing pandemic and future zoonotic spillovers.

biorxiv; 2021.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2021.10.13.464254


Understanding broadly neutralizing sarbecovirus antibody responses is key to developing countermeasures effective against SARS-CoV-2 variants and future spillovers of other sarbecoviruses. Here we describe the isolation and characterization of a human monoclonal antibody, designated S2K146, broadly neutralizing viruses belonging to all three sarbecovirus clades known to utilize ACE2 as entry receptor and protecting therapeutically against SARS-CoV-2 beta challenge in hamsters. Structural and functional studies show that most of the S2K146 epitope residues are shared with the ACE2 binding site and that the antibody inhibits receptor attachment competitively. Viral passaging experiments underscore an unusually high barrier for emergence of escape mutants making it an ideal candidate for clinical development. These findings unveil a key site of vulnerability for the development of a next generation of vaccines eliciting broad sarbecovirus immunity.

biorxiv; 2021.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2021.04.03.438258


Investigating the mechanisms of SARS-CoV-2 cellular infection is key to better understand COVID-19 immunity and pathogenesis. Infection, which involves both cell attachment and membrane fusion, relies on the ACE2 receptor that is paradoxically found at low levels in the respiratory tract, suggesting that additional mechanisms facilitating infection may exist. Here we show that C-type lectin receptors, DC-SIGN, L-SIGN and the sialic acid-binding Ig-like lectin 1 (SIGLEC1) function as auxiliary receptors by enhancing ACE2-mediated infection and modulating the neutralizing activity of different classes of spike-specific antibodies. Antibodies to the N-terminal domain (NTD) or to the conserved proteoglycan site at the base of the Receptor Binding Domain (RBD), while poorly neutralizing infection of ACE2 over-expressing cells, effectively block lectin-facilitated infection. Conversely, antibodies to the Receptor Binding Motif (RBM), while potently neutralizing infection of ACE2 over-expressing cells, poorly neutralize infection of cells expressing DC-SIGN or L-SIGN and trigger fusogenic rearrangement of the spike promoting cell-to-cell fusion. Collectively, these findings identify a lectin-dependent pathway that enhances ACE2-dependent infection by SARS-CoV-2 and reveal distinct mechanisms of neutralization by different classes of spike-specific antibodies.

Severe Acute Respiratory Syndrome , COVID-19
David E. Gordon; Gwendolyn M. Jang; Mehdi Bouhaddou; Jiewei Xu; Kirsten Obernier; Jeffrey Z. Guo; Danielle L. Swaney; Tia A. Tummino; Ruth Huttenhain; Robyn M. Kaake; Alicia L. Richards; Beril Tutuncuoglu; Helene Foussard; Jyoti Batra; Kelsey Haas; Maya Modak; Minkyu Kim; Paige Haas; Benjamin J. Polacco; Hannes Braberg; Jacqueline M. Fabius; Manon Eckhardt; Margaret Soucheray; Melanie J. Bennett; Merve Cakir; Michael J. McGregor; Qiongyu Li; Zun Zar Chi Naing; Yuan Zhou; Shiming Peng; Ilsa T. Kirby; James E. Melnyk; John S Chorba; Kevin Lou; Shizhong A. Dai; Wenqi Shen; Ying Shi; Ziyang Zhang; Inigo Barrio-Hernandez; Danish Memon; Claudia Hernandez-Armenta; Christopher J.P. Mathy; Tina Perica; Kala B. Pilla; Sai J. Ganesan; Daniel J. Saltzberg; Rakesh Ramachandran; Xi Liu; Sara B. Rosenthal; Lorenzo Calviello; Srivats Venkataramanan; Jose Liboy-Lugo; Yizhu Lin; Stephanie A. Wankowicz; Markus Bohn; Phillip P. Sharp; Raphael Trenker; Janet M. Young; Devin A. Cavero; Joseph Hiatt; Theo Roth; Ujjwal Rathore; Advait Subramanian; Julia Noack; Mathieu Hubert; Ferdinand Roesch; Thomas Vallet; Björn Meyer; Kris M. White; Lisa Miorin; Oren S. Rosenberg; Kliment A. Verba; David Agard; Melanie Ott; Michael Emerman; Davide Ruggero; Adolfo Garc&iacute-Sastre; Natalia Jura; Mark von Zastrow; Jack Taunton; Alan Ashworth; Olivier Schwartz; Marco Vignuzzi; Shaeri Mukherjee; Matt Jacobson; Harmit S. Malik; Danica G Fujimori; Trey Ideker; Charles S Craik; Stephen Floor; James S. Fraser; John Gross; Andrej Sali; Tanja Kortemme; Pedro Beltrao; Kevan Shokat; Brian K. Shoichet; Nevan J. Krogan.
biorxiv; 2020.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2020.03.22.002386


An outbreak of the novel coronavirus SARS-CoV-2, the causative agent of COVID-19 respiratory disease, has infected over 290,000 people since the end of 2019, killed over 12,000, and caused worldwide social and economic disruption1,2. There are currently no antiviral drugs with proven efficacy nor are there vaccines for its prevention. Unfortunately, the scientific community has little knowledge of the molecular details of SARS-CoV-2 infection. To illuminate this, we cloned, tagged and expressed 26 of the 29 viral proteins in human cells and identified the human proteins physically associated with each using affinity-purification mass spectrometry (AP-MS), which identified 332 high confidence SARS-CoV-2-human protein-protein interactions (PPIs). Among these, we identify 66 druggable human proteins or host factors targeted by 69 existing FDA-approved drugs, drugs in clinical trials and/or preclinical compounds, that we are currently evaluating for efficacy in live SARS-CoV-2 infection assays. The identification of host dependency factors mediating virus infection may provide key insights into effective molecular targets for developing broadly acting antiviral therapeutics against SARS-CoV-2 and other deadly coronavirus strains.

Respiratory Tract Diseases , COVID-19 , Tumor Virus Infections