Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
2.
Front Pharmacol ; 12: 652335, 2021.
Article in English | MEDLINE | ID: covidwho-1526785

ABSTRACT

COVID-19 is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). It has a disastrous effect on mankind due to the contagious and rapid nature of its spread. Although vaccines for SARS-CoV-2 have been successfully developed, the proven, effective, and specific therapeutic molecules are yet to be identified for the treatment. The repurposing of existing drugs and recognition of new medicines are continuously in progress. Efforts are being made to single out plant-based novel therapeutic compounds. As a result, some of these biomolecules are in their testing phase. During these efforts, the whole-genome sequencing of SARS-CoV-2 has given the direction to explore the omics systems and approaches to overcome this unprecedented health challenge globally. Genome, proteome, and metagenome sequence analyses have helped identify virus nature, thereby assisting in understanding the molecular mechanism, structural understanding, and disease propagation. The multi-omics approaches offer various tools and strategies for identifying potential therapeutic biomolecules for COVID-19 and exploring the plants producing biomolecules that can be used as biopharmaceutical products. This review explores the available multi-omics approaches and their scope to investigate the therapeutic promises of plant-based biomolecules in treating SARS-CoV-2 infection.

3.
Environ Sci Pollut Res Int ; 28(48): 68071-68089, 2021 Dec.
Article in English | MEDLINE | ID: covidwho-1474079

ABSTRACT

In the light of thousands of infections and deaths, the World Health Organization (WHO) has declared the outbreak of coronavirus disease (COVID-19) a worldwide pandemic. It has spread to about 22 million people worldwide, with a total of 0.45 million expiries, limiting the movement of most people worldwide in the last 6 months. However, COVID-19 became the foremost health, economic, and humanitarian challenge of the twenty-first century. Measures intended to curb the pandemic of COVID-19 included travel bans, lockdowns, and social distances through shelter orders, which will further stop human activities suddenly and eventually impact the world and the national economy. The viral disease is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). After SARS-CoV-2 virus and Middle East respiratory syndrome (MERS)-related CoV, COVID-19 is the third most significant lethal disease to humans. According to WHO, COVID-19 mortality exceeded that of SARS and MERS since COVID-19 was declared an international public health emergency. Genetic sequencing has recently established that COVID-19 is close to SARS-CoV and bat coronavirus which has not yet been recognized as the key cause of this pandemic outbreak, its transmission, and human pathogen mechanism. This review focuses on a brief introduction of novel coronavirus pathogens, including coronavirus in humans and animals, its taxonomic classification, symptoms, pathogenicity, social impact, economic impact, and potential treatment therapy for COVID-19.


Subject(s)
COVID-19 , SARS-CoV-2 , Animals , Communicable Disease Control , Humans , Pandemics , Social Change
4.
Mol Neurobiol ; 58(5): 1917-1931, 2021 May.
Article in English | MEDLINE | ID: covidwho-1009203

ABSTRACT

The new coronavirus (CoV), called novel coronavirus disease 2019 (COVID-19), belongs to the Coronaviridae family which was originated from the sea market in Wuhan city in China, at the end of the year 2019. COVID-19 and severe acute respiratory syndrome (SARS) are belonging to the same family (Coronaviridae). The current outbreak of COVID-19 creates public concern and threats all over the world and now it spreads out to more than 250 countries and territories. The researchers and scientists from all over the world are trying to find out the therapeutic strategies to abate the morbidity and mortality rate of the COVID-19 pandemic. The replication, spreading, and severity of SARS-CoV2 depend on environmental settings. Noteworthy, meteorological parameters are considered as crucial factors that affect respiratory infectious disorders, although the controversial effect of the meteorological parameter is exposed against COVID-19. Besides, COVID-19 accelerates the pathogenesis of the neurological disorders. However, the pathogenic mechanisms between COVID-19 and neurological disorders are still unclear. Hence, this review is focused on the genomics and ecology of SARS-CoV2 and elucidated the effects of climatic factors on the progression of COVID-19. This review also critically finds out the vulnerability between COVID-19 and neurological disorders based on the latest research data.


Subject(s)
COVID-19/epidemiology , Genetic Variation , Nervous System Diseases/epidemiology , SARS-CoV-2/genetics , COVID-19/genetics , Comorbidity , Humans , Nervous System Diseases/genetics , Pandemics
5.
Front Cell Dev Biol ; 8: 616, 2020.
Article in English | MEDLINE | ID: covidwho-686482

ABSTRACT

In December 2019, a severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-related epidemic was first observed in Wuhan, China. In 2020, owing to the highly infectious and deadly nature of the virus, this widespread novel coronavirus disease 2019 (nCOVID-19) became a worldwide pandemic. Studies have revealed that various environmental factors including temperature, humidity, and air pollution may also affect the transmission pattern of COVID-19. Unfortunately, still, there is no specific drug that has been validated in large-scale studies to treat patients with confirmed nCOVID-19. However, remdesivir, an inhibitor of RNA-dependent RNA polymerase (RdRp), has appeared as an auspicious antiviral drug. Currently, a large-scale study on remdesivir (i.e., 200 mg on first day, then 100 mg once/day) is ongoing to evaluate its clinical efficacy to treat nCOVID-19. Good antiviral activity against SARS-CoV-2 was not observed with the use of lopinavir/ritonavir (LPV/r). Nonetheless, the combination of umifenovir and LPV/r was found to have better antiviral activity. Furthermore, a combination of hydroxychloroquine (i.e., 200 mg 3 times/day) and azithromycin (i.e., 500 mg on first day, then 250 mg/day from day 2-5) also exhibited good activity. Currently, there are also ongoing studies to evaluate the efficacy of teicoplanin and monoclonal and polyclonal antibodies against SARS-CoV-2. Thus, in this article, we have analyzed the genetic diversity and molecular pathogenesis of nCOVID-19. We also present possible therapeutic options for nCOVID-19 patients.

SELECTION OF CITATIONS
SEARCH DETAIL