Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Add filters

Main subject
Document Type
Year range
medrxiv; 2022.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2022.03.08.22271816


The SARS-CoV-2 Omicron variant has become the dominant SARS-CoV-2 variant around the world and exhibits immune escape to current COVID-19 vaccines to some extent due to its numerous spike mutations. Here, we evaluated the immune responses to booster vaccination with intramuscular adenovirus-vectored vaccine (Ad5-nCoV), aerosolized Ad5-nCoV, a recombinant protein subunit vaccine (ZF2001) or homologous inactivated vaccine (CoronaVac) in those who received two doses of inactivated COVID-19 vaccines 6 months prior. We found that the Ad5-nCoV booster induced potent neutralizing activity against the wild-type virus and Omicron variant, while aerosolized Ad5-nCoV generated the greatest neutralizing antibody responses against the Omicron variant at day 28 after booster vaccination, at 14.1-fold that of CoronaVac, 5.6-fold that of ZF2001 and 2.0-fold that of intramuscular Ad5-nCoV. Similarly, the aerosolized Ad5-nCoV booster produced the greatest IFNgamma T-cell response at day 14 after booster vaccination. The IFNgamma T-cell response to aerosolized Ad5-nCoV was 12.8-fold for CoronaVac, 16.5-fold for ZF2001, and 5.0-fold for intramuscular Ad5-nCoV. Aerosolized Ad5-nCoV booster also produced the greatest spike-specific B cell response. Our findings suggest that inactivated vaccine recipients should consider adenovirus-vectored vaccine boosters in China and that aerosolized Ad5-nCoV may provide a more efficient alternative in response to the spread of the Omicron variant.

biorxiv; 2022.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2022.01.25.476850


Since the first report on November 24, 2021, the Omicron SARS-CoV-2 variant is now overwhelmingly spreading across the world. Two SARS-CoV-2 inactivated vaccines (IAVs), one recombinant protein subunit vaccine (PRV), and one adenovirus-vectored vaccine (AdV) have been widely administrated in many countries including China to pursue herd immunity. Here we investigated cross-neutralizing activities in 341 human serum specimens elicited by full-course vaccinations with IAV, PRV and AdV, and by various vaccine boosters following prime IAV and AdV vaccinations. We found that all types of vaccines induced significantly lower neutralizing antibody titers against the Omicron variant than against the prototype strain. For prime vaccinations with IAV and AdV, heterologous boosters with AdV and PRV, respectively, elevated serum Omicron-neutralizing activities to the highest degrees. In a mouse model, we further demonstrated that among a series of variant-derived RBD-encoding mRNA vaccine boosters, it is only the Omicron booster that significantly enhanced Omicron neutralizing antibody titers compared with the prototype booster following a prime immunization with a prototype S-encoding mRNA vaccine candidate. In summary, our systematical investigations of various vaccine boosters inform potential booster administrations in the future to combat the Omicron variant.