Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Sci Rep ; 11(1): 7307, 2021 03 31.
Article in English | MEDLINE | ID: covidwho-1164913

ABSTRACT

Outcomes of various clinical studies for the coronavirus disease 2019 (COVID-19) treatment indicated that the drug acts via inhibition of multiple pathways (targets) is likely to be more successful and promising. Keeping this hypothesis intact, the present study describes for the first-time, Grazoprevir, an FDA approved anti-viral drug primarily approved for Hepatitis C Virus (HCV), mediated multiple pathway control via synergistic inhibition of viral entry targeting host cell Angiotensin-Converting Enzyme 2 (ACE-2)/transmembrane serine protease 2 (TMPRSS2) and viral replication targeting RNA-dependent RNA polymerase (RdRP). Molecular modeling followed by in-depth structural analysis clearly demonstrated that Grazoprevir interacts with the key residues of these targets. Futher, Molecular Dynamics (MD) simulations showed stability and burial of key residues after the complex formation. Finally, Molecular Mechanics Poisson-Boltzmann Surface Area (MM-PBSA) analysis identified the governing force of drug-receptor interactions and stability. Thus, we believe that Grazoprevir could be an effective therapeutics for the treatment of the COVID-19 pandemic with a promise of unlikely drug resistance owing to multiple inhibitions of eukaryotic and viral proteins, thus warrants further clinical studies.


Subject(s)
Amides/metabolism , Amides/pharmacology , Angiotensin-Converting Enzyme 2/metabolism , Antiviral Agents/pharmacology , Carbamates/metabolism , Carbamates/pharmacology , Coronavirus RNA-Dependent RNA Polymerase/metabolism , Cyclopropanes/metabolism , Cyclopropanes/pharmacology , Quinoxalines/metabolism , Quinoxalines/pharmacology , Sulfonamides/metabolism , Sulfonamides/pharmacology , Angiotensin-Converting Enzyme 2/chemistry , Antiviral Agents/metabolism , Coronavirus RNA-Dependent RNA Polymerase/chemistry , Drug Repositioning , Humans , Models, Molecular , Molecular Dynamics Simulation , Serine Endopeptidases/chemistry , Serine Endopeptidases/metabolism , Virus Internalization/drug effects
2.
Ann N Y Acad Sci ; 1473(1): 3-10, 2020 08.
Article in English | MEDLINE | ID: covidwho-1030196

ABSTRACT

Stroke care in India has evolved rapidly in the last decade with a focus on stroke awareness, prevention, rapid triage, treatment, and rehabilitation. But acute stroke care and poststroke rehabilitation in the country have limitations owing to the economic constraints and poor access to health care. The SARS-CoV-2/COVID-19 pandemic has made stroke care even more challenging. We outline the unfavorable circumstances in stroke care induced by the pandemic; propose mitigating measures; crisis management; and provide a comparative evaluation of stroke care between India and the United States during the pandemic. There is a need for public health systems in both developed and developing countries to improve awareness, implement proper strategies of triage, acute treatment, well-defined rehabilitation plans, telemedicine services, and virtual check-ins.


Subject(s)
COVID-19/epidemiology , COVID-19/therapy , Pandemics/prevention & control , SARS-CoV-2 , Stroke/epidemiology , Stroke/therapy , Health Services Needs and Demand/trends , Humans , India/epidemiology , Telemedicine/methods , Telemedicine/trends , United States/epidemiology
3.
Curr Comput Aided Drug Des ; 18(1): 26-40, 2022.
Article in English | MEDLINE | ID: covidwho-789065

ABSTRACT

INTRODUCTION: The outburst of the novel coronavirus COVID-19, at the end of December 2019 has turned into a pandemic, risking many human lives. The causal agent being SARS-CoV-2, a member of the long-known Coronaviridae family, is a positive-sense single-stranded enveloped virus and closely related to SARS-CoV. It has become the need of the hour to understand the pathophysiology of this disease, so that drugs, vaccines, treatment regimens and plausible therapeutic agents can be produced. METHODS: In this regard, recent studies uncovered the fact that the viral genome of SARS-CoV-2 encodes non-structural proteins like RNA-dependent RNA polymerase (RdRp) which is an important tool for its transcription and replication process. A large number of nucleic acid-based anti-viral drugs are being repurposed for treating COVID-19 targeting RdRp. Few of them are at the advanced stage of clinical trials, including remdesivir. While performing a detailed investigation of the large set of nucleic acid-based drugs, we were surprised to find that the synthetic nucleic acid backbone has been explored very little or rare. RESULTS: We designed scaffolds derived from peptide nucleic acid (PNA) and subjected them to in- -silico screening systematically. These designed molecules have demonstrated excellent binding towards RdRp. Compound 12 was found to possess a similar binding affinity as remdesivir with comparable pharmacokinetics. However, the in-silico toxicity prediction indicates that compound 12 may be a superior molecule which can be explored further due to its excellent safety-profile with LD50 12,000mg/kg as opposed to remdesivir (LD50 =1000mg/kg). CONCLUSION: Compound 12 falls in the safe category of class 6. Synthetic feasibility, equipotent binding and very low toxicity of this peptide nucleic acid-derived compound can make it a leading scaffold to design, synthesize and evaluate many similar compounds for the treatment of COVID-19.


Subject(s)
COVID-19 , Peptide Nucleic Acids , Antiviral Agents/pharmacology , Humans , RNA-Dependent RNA Polymerase , SARS-CoV-2
4.
Curr Med Chem ; 28(2): 284-307, 2021.
Article in English | MEDLINE | ID: covidwho-750828

ABSTRACT

The COVID-19 pandemic continues to wreak havoc worldwide due to the lack of risk assessment, rapid spreading ability, and propensity to precipitate severe disease in comorbid conditions. In an attempt to fulfill the demand for prophylactic and treatment measures to intercept the ongoing outbreak, the drug development process is facing several obstacles and renaissance in clinical trials, including vaccines, antivirals, immunomodulators, plasma therapy, and traditional medicines. This review outlines the overview of SARS-CoV-2 infection, significant recent findings, and ongoing clinical trials concerning current and future therapeutic interventions for the management of advancing pandemic of the century.


Subject(s)
Antiviral Agents/therapeutic use , COVID-19/drug therapy , COVID-19/therapy , COVID-19 Vaccines , Clinical Trials as Topic , Humans , Immunization, Passive , Immunologic Factors/therapeutic use , Medicine, Traditional , Pandemics
SELECTION OF CITATIONS
SEARCH DETAIL