Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 28
Filter
1.
Environ Sci Pollut Res Int ; 2022 May 27.
Article in English | MEDLINE | ID: covidwho-1864443

ABSTRACT

COVID-19 has become one of the few leading causes of death and has evolved into a pandemic that disrupts everyone's routine, and balanced way of life worldwide, and will continue to do so. To bring an end to this pandemic, scientists had put their all effort into discovering the vaccine for SARS-CoV-2 infection. For their dedication, now, we have a handful of COVID-19 vaccines. Worldwide, millions of people are at risk due to the current pandemic of coronavirus disease 2019 (COVID-19) caused by SARS-CoV-2 (Severe Acute Respiratory Syndrome Coronavirus 2). Despite the lack of clinically authorized antiviral medications and vaccines for COVID-19, clinical trials of many recognized antiviral agents, their combination, and vaccine development in patients with confirmed COVID-19 are still ongoing. This discovery gave us a chance to get immune to this disease worldwide and end the pandemic. However, the unexpected capacity of mutation of the SARS-CoV-2 virus makes it difficult, like the recent SAS-CoV-2 Omicron variant. Therefore, there is a great necessity to spread the vaccination programs and prevent the spread of this dreadful epidemic by identifying and isolating afflicted patients. Furthermore, several COVID-19 tests are thought to be expensive, time-consuming, and require the use of adequately qualified persons to be carried out efficiently. In addition, we also conversed about how the various COVID-19 testing methods can be implemented for the first time in a developing country and their cost-effectiveness, accuracy, human resources requirements, and laboratory facilities.

2.
Curr Pharm Biotechnol ; 2022 05 16.
Article in English | MEDLINE | ID: covidwho-1847030

ABSTRACT

Currently, a popular era in nanomedicine is the implementation of RNA nanoparticles for various diseases and their diagnosis. RNA interference (RNAi) involves the arrangement of gene mediating mechanisms where coding and non-coding are carried out. The targeted control of gene utterance via siRNA system by nanocarriers showed an epic impact on modifying therapeutic efficacy. The article endeavours to highlight the mechanism of siRNA with concern to possible applications which are established on cancer therapy. In the current scenario to discuss the possible anti-viral effectiveness of nanoparticles with particular reference to SARS-CoV. Self-assembled nanoparticle (NP) is developed and it competently delivers to small interfering RNA (siRNA) intravenously to the tumour. The nanoparticle was found by mixing with siRNA, carrier, DNA, and lipids, preceded by after-change. Newly FDA appreciation of the first polymer-drug and additional ones in the clinically linked RNA polymer has to be highly therapeutic and diagnostic value. It has been established to be a particularly useful means for cell-type definite delivery of other RNA therapeutics like siRNA. While RNAi has helped speed up the discovery and understanding functions of a gene, it also has great potential as a therapeutic and potentially prophylactic modality. This article stated the development in the RNA polymer and also provides some examples of their diagnostic applications and therapeutics special emphasis on the anti-cancer and antiviral strategy. Patisiran and Givosiran are the recently approved si-RNA based products available in the market.

3.
Biomed Pharmacother ; 150: 113041, 2022 Jun.
Article in English | MEDLINE | ID: covidwho-1821148

ABSTRACT

BACKGROUND: Lung diseases including chronic obstructive pulmonary disease (COPD), infections like influenza, acute respiratory distress syndrome (ARDS), asthma and pneumonia lung cancer (LC) are common causes of sickness and death worldwide due to their remoteness, cold and harsh climatic conditions, and inaccessible health care facilities. PURPOSE: Many drugs have already been proposed for the treatment of lung diseases. Few of them are in clinical trials and have the potential to cure infectious diseases. Plant extracts or herbal products have been extensively used as Traditional Chinese Medicine (TCM) and Indian Ayurveda. Moreover, it has been involved in the inhibition of certain genes/protiens effects to promote regulation of signaling pathways. Natural remedies have been scientifically proven with remarkable bioactivities and are considered a cheap and safe source for lung disease. METHODS: This comprehensive review highlighted the literature about traditional plants and their metabolites with their applications for the treatment of lung diseases through experimental models in humans. Natural drugs information and mode of mechanism have been studied through the literature retrieved by Google Scholar, ScienceDirect, SciFinder, Scopus and Medline PubMed resources against lung diseases. RESULTS: In vitro, in vivo and computational studies have been explained for natural metabolites derived from plants (like flavonoids, alkaloids, and terpenoids) against different types of lung diseases. Probiotics have also been biologically active therapeutics against cancer, anti-inflammation, antiplatelet, antiviral, and antioxidants associated with lung diseases. CONCLUSION: The results of the mentioned natural metabolites repurposed for different lung diseases especially for SARS-CoV-2 should be evaluated more by advance computational applications, experimental models in the biological system, also need to be validated by clinical trials so that we may be able to retrieve potential drugs for most challenging lung diseases especially SARS-CoV-2.


Subject(s)
COVID-19 , Lung Diseases , COVID-19/drug therapy , Dietary Supplements , Humans , Lung Diseases/drug therapy , Medicine, Chinese Traditional , Phytochemicals/pharmacology , Phytochemicals/therapeutic use , Phytotherapy , Plant Extracts/pharmacology , SARS-CoV-2
4.
CNS Neurol Disord Drug Targets ; 2022 Apr 18.
Article in English | MEDLINE | ID: covidwho-1809173

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent responsible for coronavirus disease (COVID-19), is an issue of global concern since March 2020. The respiratory manifestations of COVID-19 have widely been explained in the last couple of months of the pandemic. Initially, the virus was thought to be restricted to the pulmonary system; however, as time progressed and cases increased during the second wave of COVID-19, the virus affected other organs, including the nervous system. The neurological implication of SARS-CoV-2 infection is mounting, as substantiated by various reports, and in the majority of COVID-19 patients with neurological symptoms, the penetration of SARS-CoV-2 in the central nervous system (CNS) is likely. SARS-CoV-2 can enter the nervous system by exploiting the routes of olfactory mucosa, olfactory, and sensory nerve endings, or endothelial and nerve tissues, thus crossing the neural-mucosal interface in the olfactory mucosa in the nose. Owing to multifactorial and complex pathogenic mechanisms, COVID-19 adds large-scale risk to the entire nervous system. A thorough understanding of SARS-CoV-2 neurological damage is still vague; however, our comprehension of the virus is rapidly developing. The present comprehensive review will gain insights and provide neurological dimensions of COVID-19 and their associated anomalies. The review presents the entry routes of SARS-CoV-2 into the CNS, to ascertain potential targets in the tissues owing to infection. We also discuss the molecular mechanisms involved, the array of clinical symptoms, and various nervous system diseases following the attack of SARS-CoV-2.

5.
Curr Drug Metab ; 2022 Mar 21.
Article in English | MEDLINE | ID: covidwho-1760078

ABSTRACT

Coronavirus disease-2019 (COVID-19) is a highly infectious disease caused by newly discovered severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Since the inception of SARS-CoV-2 from Wuhan, China, the virus has traveled to more than 200 countries globally. The role of SARS-CoV-2 in COVID-19 has been thoroughly investigated and reviewed in the last 22 months or so; however, a comprehensive outline of miRNAs in SARS-CoV-2 infection is still missing. The genetic material of SARS-CoV-2 is a single-stranded RNA molecule nearly 29 kb in size. RNA is composed of numerous sub-constituents, including microRNAs (miRNAs). miRNAs play an essential role in biological processes like apoptosis, cellular metabolism, cell death, cell movement, oncogenesis, intracellular signaling, immunity, and infection. Lately, miRNAs have been involved in SARS-CoV-2 infection, though the clear demonstration of miRNAs in the SARS-CoV-2 infection is not fully elucidated. The present review article summarizes recent findings of miRNAs associated with SARS-CoV-2 infection. We presented various facets of miRNAs such as miRNAs as the protagonist in viral infection, the occurrence of miRNA in cellular receptors, expression of miRNAs in multiple diseases, miRNA as a biomarker, and miRNA as a therapeutic tool discussed in detail. We also presented the vaccine status available in various countries.

6.
Comb Chem High Throughput Screen ; 2022 Mar 15.
Article in English | MEDLINE | ID: covidwho-1745213

ABSTRACT

Since the outbreak of coronavirus disease (COVID-19) in the city of Wuhan, China triggered by severe acute respiratory coronavirus 2 (SARS-CoV-2) in late November 2019 has spread to more than 200 countries of the world. The ensuing pandemic led us to enormous loss of lives mainly with the older population possessing comorbidities like diabetes, cardiovascular disease, chronic pulmonary obstructive pulmonary disease, obesity, and hypertension. Amongst these immune-debilitating diseases, SARS-CoV-2 infection is most common in diabetic patients due to the absence of a normal active immune system to fight the COVID-19. Recovery of patients having a history of diabetes from COVID-19 has several complications, and their management becomes cumbersome. During COVID-19 treatments antiviral medications, glucose-lowering agents, and steroids are carefully evaluated. In the present review, we discuss the crosstalk between SARS-CoV-2 infection and patients with a history of diabetes. We mainly emphasize the molecular factors that are involved in diabetic individuals who were recently infected by SARS-CoV-2 and develop COVID-19. Lastly, we present the medications available for the long-term management of diabetic patients with SARS-CoV-2 infection.

7.
Comput Biol Chem ; 98: 107645, 2022 Jun.
Article in English | MEDLINE | ID: covidwho-1693749

ABSTRACT

In this paper, a compartmental mathematical model has been utilized to gain a better insight about the future dynamics of COVID-19. The total human population is divided into eight various compartments including susceptible, exposed, pre-asymptomatic, asymptomatic, symptomatic, quarantined, hospitalized and recovered or removed individuals. The problem was modeled in terms of highly nonlinear coupled system of classical order ordinary differential equations (ODEs) which was further generalized with the Atangana-Balaeanu (ABC) fractional derivative in Caputo sense with nonlocal kernel. Furthermore, some theoretical analyses have been done such as boundedness, positivity, existence and uniqueness of the considered. Disease-free and endemic equilibrium points were also assessed. The basic reproduction was calculated through next generation technique. Due to high risk of infection, in the present study, we have considered the reported cases from three continents namely Americas, Europe, and south-east Asia. The reported cases were considered between 1st May 2021 and 31st July 2021 and on the basis of this data, the spread of infection is predicted for the next 200 days. The graphical solution of the considered nonlinear fractional model was obtained via numerical scheme by implementing the MATLAB software. Based on the fitted values of parameters, the basic reproduction number ℜ0 for the case of America, Asia and Europe were calculated as ℜ0≈2.92819, ℜ0≈2.87970 and ℜ0≈2.23507 respectively. It is also observed that the spread of infection in America is comparatively high followed by Asia and Europe. Moreover, the effect of fractional parameter is shown on the dynamics of spread of infection among different classes. Additionally, the effect of quarantined and treatment of infected individuals is also shown graphically. From the present analysis it is observed that awareness of being quarantine and proper treatment can reduce the infection rate dramatically and a minimal variation in quarantine and treatment rates of infected individuals can lead us to decrease the rate of infection.


Subject(s)
COVID-19 , Quarantine , Asia , Basic Reproduction Number , COVID-19/epidemiology , Hospitalization , Humans
8.
Environ Res ; 209: 112816, 2022 06.
Article in English | MEDLINE | ID: covidwho-1654412

ABSTRACT

Since the appearance in the late of December 2019, SARS-CoV-2 is rapidly evolving and mutating continuously, giving rise to various variants with variable degrees of infectivity and lethality. The virus that initially appeared in China later mutated several times, wreaking havoc and claiming many lives worldwide amid the ongoing COVID-19 pandemic. After Alpha, Beta, Gamma, and Delta variants, the most recently emerged variant of concern (VOC) is the Omicron (B.1.1.529) that has evolved due to the accumulation of high numbers of mutations especially in the spike protein, raising concerns for its ability to evade from pre-existing immunity acquired through vaccination or natural infection as well as overpowering antibodies-based therapies. Several theories are on the surface to explain how the Omicron has gathered such a high number of mutations within less time. Few of them are higher mutation rates within a subgroup of population and then its introduction to a larger population, long term persistence and evolution of the virus in immune-compromised patients, and epizootic infection in animals from humans, where under different immune pressures the virus mutated and then got reintroduced to humans. Multifaceted approach including rapid diagnosis, genome analysis of emerging variants, ramping up of vaccination drives and receiving booster doses, efficacy testing of vaccines and immunotherapies against newly emerged variants, updating the available vaccines, designing of multivalent vaccines able to generate hybrid immunity, up-gradation of medical facilities and strict implementation of adequate prevention and control measures need to be given high priority to handle the on-going SARS-CoV-2 pandemic successfully.


Subject(s)
COVID-19 , Animals , COVID-19/epidemiology , COVID-19/prevention & control , Global Health , Humans , Pandemics , SARS-CoV-2/genetics
10.
Front Pharmacol ; 12: 758159, 2021.
Article in English | MEDLINE | ID: covidwho-1581234

ABSTRACT

Background: The world has been unprecedentedly hit by a global pandemic which broke the record of deadly pandemics that faced humanity ever since its existence. Even kids are well-versed in the terminologies and basics of the SARS-CoV-2 virus and COVID-19 now. The vaccination program has been successfully launched in various countries, given that the huge global population of concern is still far behind to be vaccinated. Furthermore, the scarcity of any potential drug against the COVID-19-causing virus forces scientists and clinicians to search for alternative and complementary medicines on a war-footing basis. Aims and Objectives: The present review aims to cover and analyze the etiology and epidemiology of COVID-19, the role of intestinal microbiota and pro-inflammatory markers, and most importantly, the natural products to combat this deadly SARS-CoV-2 virus. Methods: A primary literature search was conducted through PubMed and Google Scholar using relevant keywords. Natural products were searched from January 2020 to November 2020. No timeline limit has been imposed on the search for the biological sources of those phytochemicals. Interactive mapping has been done to analyze the multi-modal and multi-target sources. Results and Discussion: The intestinal microbiota and the pro-inflammatory markers that can serve the prognosis, diagnosis, and treatment of COVID-19 were discussed. The literature search resulted in yielding 70 phytochemicals and ten polyherbal formulations which were scientifically analyzed against the SARS-CoV-2 virus and its targets and found significant. Retrospective analyses led to provide information about 165 biological sources that can also be screened if not done earlier. Conclusion: The interactive analysis mapping of biological sources with phytochemicals and targets as well as that of phytochemical class with phytochemicals and COVID-19 targets yielded insights into the multitarget and multimodal evidence-based complementary medicines.

11.
Curr Pharm Des ; 2021 12 10.
Article in English | MEDLINE | ID: covidwho-1572231

ABSTRACT

Since the authors are not responding to the editor's requests to fulfill the editorial requirement, therefore, the article has been withdrawn by the publisher.Bentham Science apologizes to the readers of the journal for any inconvenience this may have caused.The Bentham Editorial Policy on Article Withdrawal can be found at https://benthamscience.com/editorial-policies-main.php. Bentham Science Disclaimer: It is a condition of publication that manuscripts submitted to this journal have not been published and will not be simultaneously submitted or published elsewhere. Furthermore, any data, illustration, structure or table that has been published elsewhere must be reported, and copyright permission for reproduction must be obtained. Plagiarism is strictly forbidden, and by submitting the article for publication the authors agree that the publishers have the legal right to take appropriate action against the authors, if plagiarism or fabricated information is discovered. By submitting a manuscript the authors agree that the copyright of their article is transferred to the publishers if and when the article is accepted for publication.

12.
Comb Chem High Throughput Screen ; 2021 Nov 30.
Article in English | MEDLINE | ID: covidwho-1547091

ABSTRACT

Infection by the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) provokes acute inflammation due to extensive replication of the virus in the epithelial cells of the upper and lower respiratory system. The mammalian target of rapamycin (mTOR) is a l signalling protein with critical functions in cell growth, metabolism, and proliferation. It is known for its regulatory functions in protein synthesis and angiogenesis cascades. The structure of mTOR consists of two distinct complexes (mTORC1 and mTORC2) with diverse functions at different levels of the signaling pathway. By activating mRNA translation, the mTORC1 plays a key role in regulating protein synthesis and cellular growth. On the other hand, the functions of mTORC2 are mainly associated with cell proliferation and survival. By using an appropriate inhibitor at the right time, mTOR modulation could provide immunosuppressive opportunities as antirejection regimens in organ transplantation as well as in the treatment of autoimmune diseases and solid tumours. The mTOR has an important role in the inflammatory process, too. Inhibitors of mTOR might indeed be promising agents in the treatment of viral infections. They have further been successfully used in patients with severe influenza A/H1N1 pneumonia and acute respiratory failure. The officially accepted mTOR inhibitors that have undergone clinical testing are sirolimus, everolimus, temsirolimus, and tacrolimus. Thus, further studies on mTOR inhibitors for SARS-CoV-2 infection or COVID-19 therapy are well merited.

13.
Front Pharmacol ; 12: 652335, 2021.
Article in English | MEDLINE | ID: covidwho-1526785

ABSTRACT

COVID-19 is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). It has a disastrous effect on mankind due to the contagious and rapid nature of its spread. Although vaccines for SARS-CoV-2 have been successfully developed, the proven, effective, and specific therapeutic molecules are yet to be identified for the treatment. The repurposing of existing drugs and recognition of new medicines are continuously in progress. Efforts are being made to single out plant-based novel therapeutic compounds. As a result, some of these biomolecules are in their testing phase. During these efforts, the whole-genome sequencing of SARS-CoV-2 has given the direction to explore the omics systems and approaches to overcome this unprecedented health challenge globally. Genome, proteome, and metagenome sequence analyses have helped identify virus nature, thereby assisting in understanding the molecular mechanism, structural understanding, and disease propagation. The multi-omics approaches offer various tools and strategies for identifying potential therapeutic biomolecules for COVID-19 and exploring the plants producing biomolecules that can be used as biopharmaceutical products. This review explores the available multi-omics approaches and their scope to investigate the therapeutic promises of plant-based biomolecules in treating SARS-CoV-2 infection.

14.
J Biomol Struct Dyn ; 39(11): 4175-4184, 2021 07.
Article in English | MEDLINE | ID: covidwho-1343548

ABSTRACT

SARS coronavirus (COVID-19) is a real health challenge of the 21st century for scientists, health workers, politicians, and all humans that has severe cause epidemic worldwide. The virus exerts its pathogenic activity through by mechanism and gains the entry via spike proteins (S) and Angiotensin-Converting Enzyme 2 (ACE2) receptor proteins on host cells. The present work is an effort for a computational target to block the residual binding protein (RBP) on spike proteins (S), Angiotensin-Converting Enzyme 2 (ACE2) receptor proteins by probiotics namely Plantaricin BN, Plantaricin JLA-9, Plantaricin W, Plantaricin D along with RNA-dependent RNA polymerase (RdRp). Docking studies were designed in order to obtain the binding energies for Plantaricin metabolites. The binding energies for Plantaricin W were -14.64, -11.1 and -12.68 for polymerase, RBD and ACE2 respectively comparatively very high with other compounds. Plantaricin W, D, and JLA-9 were able to block the residues (THR556, ALA558) surrounding the deep grove catalytic site (VAL557) of RdRp making them more therapeutically active for COVID-19. Molecular dynamics studies further strengthen stability of the complexes of plantaricin w and SARS-CoV-2 RdRp enzyme, RBD of spike protein, and human ACE2 receptor. The present study present multi-way options either by blocking RBD on S proteins or interaction of S protein with ACE2 receptor proteins or inhibiting RdRp to counter any effect of COVID-19 by Plantaricin molecules paving a way that can be useful in the treatment of COVID-19 until some better option will be available.Communicated by Ramaswamy H. Sarma.


Subject(s)
COVID-19 , Probiotics , Antiviral Agents/pharmacology , Humans , Protein Binding , SARS-CoV-2 , Spike Glycoprotein, Coronavirus/metabolism
15.
PLoS One ; 16(4): e0249788, 2021.
Article in English | MEDLINE | ID: covidwho-1171257

ABSTRACT

BACKGROUND: Coronavirus disease 2019 (COVID-19), a pandemic disease caused by the severe acute respiratory syndrome coronavirus 2 started to spread globally since December 2019 from Wuhan, China. Fever has been observed as one of the most common clinical manifestations, although the prevalence and characteristics of fever in adult and paediatric COVID-19 patients is inconclusive. We aimed to conduct a systematic review and meta-analysis to estimate the overall pooled prevalence of fever and chills in addition to fever characteristics (low, medium, and high temperature) in both adult and paediatric COVID-19 patients. METHODS: The protocol of this systematic review and meta-analysis was registered with PROSPERO (CRD42020176327). PubMed, Scopus, ScienceDirect and Google Scholar databases were searched between 1st December 2019 and 3rd April 2020 without language restrictions. Both adult (≥18 years) and paediatric (<18 years) COVID-19 patients were considered eligible. We used random-effects model for the meta-analysis to obtain the pooled prevalence and risk ratio (RR) with 95% confidence intervals (CIs). Quality assessment of included studies was performed using the Joanna Briggs Institute critical appraisal tools. Heterogeneity was assessed using the I² statistic and Cochran's Q test. Robustness of the pooled estimates was checked by different subgroups and sensitivity analyses. RESULTS: We identified 2055 studies, of which 197 studies (n = 24266) were included in the systematic review and 167 studies with 17142 adults and 373 paediatrics were included in the meta-analysis. Overall, the pooled prevalence of fever in adult and paediatric COVID-19 patients were 79.43% [95% CI: 77.05-81.80, I2 = 95%] and 45.86% [95% CI: 35.24-56.48, I2 = 78%], respectively. Besides, 14.45% [95% CI: 10.59-18.32, I2 = 88%] of the adult COVID-19 patients were accompanied with chills. In adult COVID-19 patients, the prevalence of medium-grade fever (44.33%) was higher compared to low- (38.16%) and high-grade fever (14.71%). In addition, the risk of both low (RR: 2.34, 95% CI: 1.69-3.22, p<0.00001, I2 = 84%) and medium grade fever (RR: 2.79, 95% CI: 2.21-3.51, p<0.00001, I2 = 75%) were significantly higher compared to high-grade fever, however, there was no significant difference between low- and medium-grade fever (RR: 1.17, 95% CI: 0.94-1.44, p = 0.16, I2 = 87%). 88.8% of the included studies were of high-quality. The sensitivity analyses indicated that our findings of fever prevalence for both adult and paediatric patients are reliable and robust. CONCLUSIONS: The prevalence of fever in adult COVID-19 patients was high, however, 54.14% of paediatric COVID-19 patients did not exhibit fever as an initial clinical feature. Prevalence and risk of low and medium-grade fevers were higher compared to high-grade fever.


Subject(s)
COVID-19 , Fever , Pandemics , SARS-CoV-2/metabolism , Adult , COVID-19/epidemiology , COVID-19/metabolism , Child , Fever/epidemiology , Fever/metabolism , Fever/virology , Humans
16.
CNS Neurol Disord Drug Targets ; 21(3): 228-234, 2022.
Article in English | MEDLINE | ID: covidwho-1125178

ABSTRACT

Increasing reports of neurological symptoms in COVID-19 patient's warrant clinicians to adopt and define the standardized diagnostic and managing protocols in order to investigate the linkage of neurological symptoms in COVID-19. Encephalitis, anosmia, acute cerebrovascular disease and ageusia are some of the emerging neurological manifestations which are reported in several cohort studies on hospitalized patients with COVID-19. Although the COVID-19 pandemic is primarily associated with infection of the respiratory tract system, but measures like lockdown and restricted physical movements to control the spread of this infection will certainly have neurobehavioural implications. Additionally, some of the patients with pre-existing neurological manifestations like epilepsy, Parkinson's and Alzheimer's disease are more prone to infection and demand extra care as well as improvised treatment. In this review, we have focused on the neurovirological clinical manifestations associated with the COVID-19 pandemic. Although the prevalence of neurovirological manifestations is rare increasing reports cannot be ignored and needs to be discussed thoroughly with respect to risk analysis and considerations for developing a management strategy. This also helps in defining the burden of neurological disorders associated with COVID-19 patients.


Subject(s)
COVID-19/psychology , COVID-19/therapy , Mental Disorders/psychology , Mental Disorders/therapy , Nervous System Diseases/psychology , Nervous System Diseases/therapy , Angiotensin-Converting Enzyme 2/metabolism , COVID-19/epidemiology , COVID-19/metabolism , Communicable Disease Control/methods , Communicable Disease Control/trends , Humans , Mental Disorders/epidemiology , Mental Disorders/metabolism , Nervous System Diseases/epidemiology , Nervous System Diseases/metabolism , Risk Assessment/methods , Risk Assessment/trends , SARS-CoV-2/metabolism
17.
Viruses ; 13(2)2021 02 15.
Article in English | MEDLINE | ID: covidwho-1122257

ABSTRACT

Coronavirus disease-19 (COVID-19) pandemic, caused by the novel SARS-CoV-2 virus, continues to be a global threat. The number of cases and deaths will remain escalating due to the lack of effective therapeutic agents. Several studies have established the importance of the viral main protease (Mpro) in the replication of SARS-CoV-2 which makes it an attractive target for antiviral drug development, including pharmaceutical repurposing and other medicinal chemistry approaches. Identification of natural products with considerable inhibitory potential against SARS-CoV-2 could be beneficial as a rapid and potent alternative with drug-likeness by comparison to de novo antiviral drug discovery approaches. Thereof, we carried out the structure-based screening of natural products from Echinacea-angustifolia, commonly used to prevent cold and other microbial respiratory infections, targeting SARS-CoV-2 Mpro. Four natural products namely, Echinacoside, Quercetagetin 7-glucoside, Levan N, Inulin from chicory, and 1,3-Dicaffeoylquinic acid, revealed significant docking energy (>-10 kcal/mol) in the SARS-CoV-2 Mpro catalytic pocket via substantial intermolecular contacts formation against co-crystallized ligand (<-4 kcal/mol). Furthermore, the docked poses of SARS-CoV-2 Mpro with selected natural products showed conformational stability through molecular dynamics. Exploring the end-point net binding energy exhibited substantial contribution of Coulomb and van der Waals interactions to the stability of respective docked conformations. These results advocated the natural products from Echinacea angustifolia for further experimental studies with an elevated probability to discover the potent SARS-CoV-2 Mpro antagonist with higher affinity and drug-likeness.


Subject(s)
Antiviral Agents/chemistry , Coronavirus 3C Proteases/antagonists & inhibitors , Echinacea/chemistry , Protease Inhibitors/chemistry , Binding Sites , Drug Discovery , Flavones/chemistry , Fructans/chemistry , Glycosides/chemistry , Inulin/chemistry , Molecular Docking Simulation , Phytochemicals/chemistry , Protein Binding , Quinic Acid/analogs & derivatives , Quinic Acid/chemistry
18.
Viruses ; 13(2)2021 02 15.
Article in English | MEDLINE | ID: covidwho-1085037

ABSTRACT

Coronavirus disease-19 (COVID-19) pandemic, caused by the novel SARS-CoV-2 virus, continues to be a global threat. The number of cases and deaths will remain escalating due to the lack of effective therapeutic agents. Several studies have established the importance of the viral main protease (Mpro) in the replication of SARS-CoV-2 which makes it an attractive target for antiviral drug development, including pharmaceutical repurposing and other medicinal chemistry approaches. Identification of natural products with considerable inhibitory potential against SARS-CoV-2 could be beneficial as a rapid and potent alternative with drug-likeness by comparison to de novo antiviral drug discovery approaches. Thereof, we carried out the structure-based screening of natural products from Echinacea-angustifolia, commonly used to prevent cold and other microbial respiratory infections, targeting SARS-CoV-2 Mpro. Four natural products namely, Echinacoside, Quercetagetin 7-glucoside, Levan N, Inulin from chicory, and 1,3-Dicaffeoylquinic acid, revealed significant docking energy (>-10 kcal/mol) in the SARS-CoV-2 Mpro catalytic pocket via substantial intermolecular contacts formation against co-crystallized ligand (<-4 kcal/mol). Furthermore, the docked poses of SARS-CoV-2 Mpro with selected natural products showed conformational stability through molecular dynamics. Exploring the end-point net binding energy exhibited substantial contribution of Coulomb and van der Waals interactions to the stability of respective docked conformations. These results advocated the natural products from Echinacea angustifolia for further experimental studies with an elevated probability to discover the potent SARS-CoV-2 Mpro antagonist with higher affinity and drug-likeness.


Subject(s)
Antiviral Agents/chemistry , Coronavirus 3C Proteases/antagonists & inhibitors , Echinacea/chemistry , Protease Inhibitors/chemistry , Binding Sites , Drug Discovery , Flavones/chemistry , Fructans/chemistry , Glycosides/chemistry , Inulin/chemistry , Molecular Docking Simulation , Phytochemicals/chemistry , Protein Binding , Quinic Acid/analogs & derivatives , Quinic Acid/chemistry
19.
Front Neurol ; 11: 562634, 2020.
Article in English | MEDLINE | ID: covidwho-983697

ABSTRACT

Background: Coronavirus disease 2019 (COVID-19) started to spread globally since December 2019 from Wuhan, China. Headache has been observed as one of the clinical manifestations in COVID-19 patients. We aimed to conduct a comprehensive systematic review and meta-analysis to estimate the overall pooled prevalence of headache in COVID-19 patients. Methods: PubMed, Scopus, ScienceDirect, and Google Scholar databases were searched to identify studies published between December 2019 and March 2020. Adult (≥18 years) COVID-19 patients were considered eligible. We used random-effects model to estimate the pooled prevalence with 95% confidence intervals (CIs). Quality assessment was done using the Joanna Briggs Institute critical appraisal tools. This study is registered with PROSPERO (CRD42020182529). Results: We identified 2,055 studies, of which 86 studies (n = 14,275, 49.4% female) were included in the meta-analysis. Overall, the pooled prevalence of headache in COVID-19 patients was 10.1% [95% CI: 8.76-11.49]. There was no significant difference of headache prevalence in severe or critical vs. non-severe (RR: 1.05, p = 0.78), survived (recovered or discharged) vs. non-survived (RR: 1.36, p = 0.23), and ICU vs. non-ICU (RR: 1.06, p = 0.87) COVID-19 patients. We detected 64.0, 34.9, and 1.1% of the included studies as high, moderate, and low quality, respectively. Conclusions: From the first 4-month data of the outbreak, headache was detected in 10.1% of the adult COVID-19 patients.

SELECTION OF CITATIONS
SEARCH DETAIL