Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
1.
Front Immunol ; 14: 1130539, 2023.
Article in English | MEDLINE | ID: covidwho-20241121

ABSTRACT

The highly transmissible Omicron (B.1.1.529) variant of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) was first detected in late 2021. Initial Omicron waves were primarily made up of sub-lineages BA.1 and/or BA.2, BA.4, and BA.5 subsequently became dominant in mid-2022, and several descendants of these sub-lineages have since emerged. Omicron infections have generally caused less severe disease on average than those caused by earlier variants of concern in healthy adult populations, at least, in part, due to increased population immunity. Nevertheless, healthcare systems in many countries, particularly those with low population immunity, have been overwhelmed by unprecedented surges in disease prevalence during Omicron waves. Pediatric admissions were also higher during Omicron waves compared with waves of previous variants of concern. All Omicron sub-lineages exhibit partial escape from wild-type (Wuhan-Hu 1) spike-based vaccine-elicited neutralizing antibodies, with sub-lineages with more enhanced immuno-evasive properties emerging over time. Evaluating vaccine effectiveness (VE) against Omicron sub-lineages has become challenging against a complex background of varying vaccine coverage, vaccine platforms, prior infection rates, and hybrid immunity. Original messenger RNA vaccine booster doses substantially improved VE against BA.1 or BA.2 symptomatic disease. However, protection against symptomatic disease waned, with reductions detected from 2 months after booster administration. While original vaccine-elicited CD8+ and CD4+ T-cell responses cross-recognize Omicron sub-lineages, thereby retaining protection against severe outcomes, variant-adapted vaccines are required to expand the breadth of B-cell responses and improve durability of protection. Variant-adapted vaccines were rolled out in late 2022 to increase overall protection against symptomatic and severe infections caused by Omicron sub-lineages and antigenically aligned variants with enhanced immune escape mechanisms.


Subject(s)
COVID-19 , Vaccines , Adult , Humans , Child , COVID-19/epidemiology , COVID-19/prevention & control , SARS-CoV-2/genetics , Vaccine Efficacy , Cost of Illness
2.
mSystems ; 8(2): e0092822, 2023 04 27.
Article in English | MEDLINE | ID: covidwho-2277727

ABSTRACT

In the 21st century, several emergent viruses have posed a global threat. Each pathogen has emphasized the value of rapid and scalable vaccine development programs. The ongoing severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic has made the importance of such efforts especially clear. New biotechnological advances in vaccinology allow for recent advances that provide only the nucleic acid building blocks of an antigen, eliminating many safety concerns. During the COVID-19 pandemic, these DNA and RNA vaccines have facilitated the development and deployment of vaccines at an unprecedented pace. This success was attributable at least in part to broader shifts in scientific research relative to prior epidemics: the genome of SARS-CoV-2 was available as early as January 2020, facilitating global efforts in the development of DNA and RNA vaccines within 2 weeks of the international community becoming aware of the new viral threat. Additionally, these technologies that were previously only theoretical are not only safe but also highly efficacious. Although historically a slow process, the rapid development of vaccines during the COVID-19 crisis reveals a major shift in vaccine technologies. Here, we provide historical context for the emergence of these paradigm-shifting vaccines. We describe several DNA and RNA vaccines in terms of their efficacy, safety, and approval status. We also discuss patterns in worldwide distribution. The advances made since early 2020 provide an exceptional illustration of how rapidly vaccine development technology has advanced in the last 2 decades in particular and suggest a new era in vaccines against emerging pathogens. IMPORTANCE The SARS-CoV-2 pandemic has caused untold damage globally, presenting unusual demands on but also unique opportunities for vaccine development. The development, production, and distribution of vaccines are imperative to saving lives, preventing severe illness, and reducing the economic and social burdens caused by the COVID-19 pandemic. Although vaccine technologies that provide the DNA or RNA sequence of an antigen had never previously been approved for use in humans, they have played a major role in the management of SARS-CoV-2. In this review, we discuss the history of these vaccines and how they have been applied to SARS-CoV-2. Additionally, given that the evolution of new SARS-CoV-2 variants continues to present a significant challenge in 2022, these vaccines remain an important and evolving tool in the biomedical response to the pandemic.


Subject(s)
COVID-19 , Viral Vaccines , Humans , COVID-19/epidemiology , SARS-CoV-2/genetics , COVID-19 Vaccines , Nucleic Acid-Based Vaccines , Pandemics/prevention & control , mRNA Vaccines
3.
mBio ; 13(2): e0203021, 2022 04 26.
Article in English | MEDLINE | ID: covidwho-1731258

ABSTRACT

The ongoing coronavirus disease 2019 (COVID-19) pandemic demonstrates the threat posed by novel coronaviruses to human health. Coronaviruses share a highly conserved cell entry mechanism mediated by the spike protein, the sole product of the S gene. The structural dynamics by which the spike protein orchestrates infection illuminate how antibodies neutralize virions and how S mutations contribute to viral fitness. Here, we review the process by which spike engages its proteinaceous receptor, angiotensin converting enzyme 2 (ACE2), and how host proteases prime and subsequently enable efficient membrane fusion between virions and target cells. We highlight mutations common among severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants of concern and discuss implications for cell entry. Ultimately, we provide a model by which sarbecoviruses are activated for fusion competency and offer a framework for understanding the interplay between humoral immunity and the molecular evolution of the SARS-CoV-2 Spike. In particular, we emphasize the relevance of the Canyon Hypothesis (M. G. Rossmann, J Biol Chem 264:14587-14590, 1989) for understanding evolutionary trajectories of viral entry proteins during sustained intraspecies transmission of a novel viral pathogen.


Subject(s)
COVID-19 , Spike Glycoprotein, Coronavirus , Evolution, Molecular , Humans , Peptidyl-Dipeptidase A/metabolism , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/metabolism
4.
mSystems ; 6(5): e0009521, 2021 10 26.
Article in English | MEDLINE | ID: covidwho-1483995

ABSTRACT

The novel coronavirus SARS-CoV-2, which emerged in late 2019, has since spread around the world and infected hundreds of millions of people with coronavirus disease 2019 (COVID-19). While this viral species was unknown prior to January 2020, its similarity to other coronaviruses that infect humans has allowed for rapid insight into the mechanisms that it uses to infect human hosts, as well as the ways in which the human immune system can respond. Here, we contextualize SARS-CoV-2 among other coronaviruses and identify what is known and what can be inferred about its behavior once inside a human host. Because the genomic content of coronaviruses, which specifies the virus's structure, is highly conserved, early genomic analysis provided a significant head start in predicting viral pathogenesis and in understanding potential differences among variants. The pathogenesis of the virus offers insights into symptomatology, transmission, and individual susceptibility. Additionally, prior research into interactions between the human immune system and coronaviruses has identified how these viruses can evade the immune system's protective mechanisms. We also explore systems-level research into the regulatory and proteomic effects of SARS-CoV-2 infection and the immune response. Understanding the structure and behavior of the virus serves to contextualize the many facets of the COVID-19 pandemic and can influence efforts to control the virus and treat the disease. IMPORTANCE COVID-19 involves a number of organ systems and can present with a wide range of symptoms. From how the virus infects cells to how it spreads between people, the available research suggests that these patterns are very similar to those seen in the closely related viruses SARS-CoV-1 and possibly Middle East respiratory syndrome-related CoV (MERS-CoV). Understanding the pathogenesis of the SARS-CoV-2 virus also contextualizes how the different biological systems affected by COVID-19 connect. Exploring the structure, phylogeny, and pathogenesis of the virus therefore helps to guide interpretation of the broader impacts of the virus on the human body and on human populations. For this reason, an in-depth exploration of viral mechanisms is critical to a robust understanding of SARS-CoV-2 and, potentially, future emergent human CoVs (HCoVs).

5.
Cell ; 184(19): 4939-4952.e15, 2021 09 16.
Article in English | MEDLINE | ID: covidwho-1330684

ABSTRACT

The emergence of the COVID-19 epidemic in the United States (U.S.) went largely undetected due to inadequate testing. New Orleans experienced one of the earliest and fastest accelerating outbreaks, coinciding with Mardi Gras. To gain insight into the emergence of SARS-CoV-2 in the U.S. and how large-scale events accelerate transmission, we sequenced SARS-CoV-2 genomes during the first wave of the COVID-19 epidemic in Louisiana. We show that SARS-CoV-2 in Louisiana had limited diversity compared to other U.S. states and that one introduction of SARS-CoV-2 led to almost all of the early transmission in Louisiana. By analyzing mobility and genomic data, we show that SARS-CoV-2 was already present in New Orleans before Mardi Gras, and the festival dramatically accelerated transmission. Our study provides an understanding of how superspreading during large-scale events played a key role during the early outbreak in the U.S. and can greatly accelerate epidemics.


Subject(s)
COVID-19/epidemiology , Epidemics , SARS-CoV-2/physiology , COVID-19/transmission , Databases as Topic , Disease Outbreaks , Humans , Louisiana/epidemiology , Phylogeny , Risk Factors , SARS-CoV-2/classification , Texas , Travel , United States/epidemiology
6.
Nat Commun ; 12(1): 4598, 2021 07 26.
Article in English | MEDLINE | ID: covidwho-1327197

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has infected at least 180 million people since its identification as the cause of the current COVID-19 pandemic. The rapid pace of vaccine development has resulted in multiple vaccines already in use worldwide. The contemporaneous emergence of SARS-CoV-2 'variants of concern' (VOC) across diverse geographic locales underscores the need to monitor the efficacy of vaccines being administered globally. All WHO designated VOC carry spike (S) polymorphisms thought to enable escape from neutralizing antibodies. Here, we characterize the neutralizing activity of post-Sputnik V vaccination sera against the ensemble of S mutations present in alpha (B.1.1.7) and beta (B.1.351) VOC. Using de novo generated replication-competent vesicular stomatitis virus expressing various SARS-CoV-2-S in place of VSV-G (rcVSV-CoV2-S), coupled with a clonal 293T-ACE2 + TMPRSS2 + cell line optimized for highly efficient S-mediated infection, we determine that only 1 out of 12 post-vaccination serum samples shows effective neutralization (IC90) of rcVSV-CoV2-S: B.1.351 at full serum strength. The same set of sera efficiently neutralize S from B.1.1.7 and exhibit only moderately reduced activity against S carrying the E484K substitution alone. Taken together, our data suggest that control of some emergent SARS-CoV-2 variants may benefit from updated vaccines.


Subject(s)
Antibodies, Neutralizing/immunology , COVID-19 Vaccines/immunology , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/immunology , Adult , COVID-19 Vaccines/administration & dosage , COVID-19 Vaccines/genetics , Female , HEK293 Cells , Humans , Immune Sera/immunology , Male , Middle Aged , Mutation , Neutralization Tests , SARS-CoV-2/genetics , SARS-CoV-2/physiology , Spike Glycoprotein, Coronavirus/genetics , Vaccination/methods , Vesicular stomatitis Indiana virus/genetics , Vesicular stomatitis Indiana virus/immunology , Virus Internalization/drug effects , Virus Replication/drug effects , Virus Replication/genetics , Virus Replication/immunology
7.
Nature ; 593(7859): 341, 2021 05.
Article in English | MEDLINE | ID: covidwho-1243279
8.
mBio ; 12(1)2021 02 16.
Article in English | MEDLINE | ID: covidwho-1088198

ABSTRACT

The global coronavirus disease 2019 (COVID-19) pandemic has mobilized efforts to develop vaccines and antibody-based therapeutics, including convalescent-phase plasma therapy, that inhibit viral entry by inducing or transferring neutralizing antibodies (nAbs) against the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike glycoprotein (CoV2-S). However, rigorous efficacy testing requires extensive screening with live virus under onerous biosafety level 3 (BSL3) conditions, which limits high-throughput screening of patient and vaccine sera. Myriad BSL2-compatible surrogate virus neutralization assays (VNAs) have been developed to overcome this barrier. Yet, there is marked variability between VNAs and how their results are presented, making intergroup comparisons difficult. To address these limitations, we developed a standardized VNA using CoV2-S pseudotyped particles (CoV2pp) based on vesicular stomatitis virus bearing the Renilla luciferase gene in place of its G glycoprotein (VSVΔG); this assay can be robustly produced at scale and generate accurate neutralizing titers within 18 h postinfection. Our standardized CoV2pp VNA showed a strong positive correlation with CoV2-S enzyme-linked immunosorbent assay (ELISA) results and live-virus neutralizations in confirmed convalescent-patient sera. Three independent groups subsequently validated our standardized CoV2pp VNA (n > 120). Our data (i) show that absolute 50% inhibitory concentration (absIC50), absIC80, and absIC90 values can be legitimately compared across diverse cohorts, (ii) highlight the substantial but consistent variability in neutralization potency across these cohorts, and (iii) support the use of the absIC80 as a more meaningful metric for assessing the neutralization potency of a vaccine or convalescent-phase sera. Lastly, we used our CoV2pp in a screen to identify ultrapermissive 293T clones that stably express ACE2 or ACE2 plus TMPRSS2. When these are used in combination with our CoV2pp, we can produce CoV2pp sufficient for 150,000 standardized VNAs/week.IMPORTANCE Vaccines and antibody-based therapeutics like convalescent-phase plasma therapy are premised upon inducing or transferring neutralizing antibodies that inhibit SARS-CoV-2 entry into cells. Virus neutralization assays (VNAs) for measuring neutralizing antibody titers (NATs) are an essential part of determining vaccine or therapeutic efficacy. However, such efficacy testing is limited by the inherent dangers of working with the live virus, which requires specialized high-level biocontainment facilities. We therefore developed a standardized replication-defective pseudotyped particle system that mimics the entry of live SARS-CoV-2. This tool allows for the safe and efficient measurement of NATs, determination of other forms of entry inhibition, and thorough investigation of virus entry mechanisms. Four independent labs across the globe validated our standardized VNA using diverse cohorts. We argue that a standardized and scalable assay is necessary for meaningful comparisons of the myriad of vaccines and antibody-based therapeutics becoming available. Our data provide generalizable metrics for assessing their efficacy.


Subject(s)
COVID-19/diagnosis , COVID-19/immunology , SARS-CoV-2/immunology , SARS-CoV-2/pathogenicity , Antibodies, Neutralizing/immunology , Antibodies, Neutralizing/metabolism , Antibodies, Viral/metabolism , Enzyme-Linked Immunosorbent Assay , Humans , Neutralization Tests
SELECTION OF CITATIONS
SEARCH DETAIL