Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Add filters

Document Type
Year range
Ann Oper Res ; : 1-37, 2022 Aug 26.
Article in English | MEDLINE | ID: covidwho-2014200


The COVID-19 pandemic has inflicted the global economy and caused substantial financial losses. The energy sector was heavily affected and resulted in energy prices massively tumbling. The Russian invasion of Ukraine has fueled the energy maker more volatile. In such uncertain contexts, an Early Warning System (EWS) would efficiently contribute to stabilizing market swings. It will leverage the ability to control operating costs and pave the way for smooth economic recovery. Within this framework, we deploy Machine Learning (ML) models to forecast energy equity prices by employing uncertainty indices as a proxy for predicting energy market volatility. We empirically examine the comparative effectiveness of prevalent ML models and conventional approaches (regression) to forecast the energy equity prices by utilizing the daily data from 1/6/2011 to 18/1/2022 for four US uncertainty and eight energy equity indices. Results show that the Nonlinear Autoregressive with External (Exogenous) parameters (NARX) of Neural Networks (NN) scored significantly better accuracy than all other (25) ML models and conventional approaches. The study outcomes are beneficial for policymakers, governments, market regulators, investors, hedge and mutual funds, and corporations. They improve stakeholders' resilience to exogenous shocks, blaze the recovery path, and provide evidence-based for assets allocation strategies.

Journal of International Financial Markets, Institutions and Money ; 75:101444, 2021.
Article in English | ScienceDirect | ID: covidwho-1458765


In this paper, we estimate the effects of the COVID-19 pandemic on the banking system and the real economy and simulate potential policy responses. We combine machine learning algorithms, namely a Random Regression Forest and a Long Short Term Memory neural network, with an agent-based framework to calculate the expected results of the pandemic, according to different scenarios regarding financial stability. We then simulate government responses to this crisis and find that traditional demand and supply stimuli are outperformed by our suggestion of relaxing bank regulation. We examine two alternatives of our suggested policy and find that they result in optimised outcomes for most variables examined. Our findings have important policy implications as authorities are formulating post-crisis recovery plans amidst budgetary constraints.