Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 9 de 9
Front Public Health ; 10: 902835, 2022.
Article in English | MEDLINE | ID: covidwho-1929657
Antibiotics (Basel) ; 11(7)2022 Jul 07.
Article in English | MEDLINE | ID: covidwho-1917261


Antimicrobial resistance is a serious threat to global health, causing increased mortality and morbidity especially among critically ill patients. This toll is expected to rise following the COVID-19 pandemic. Carbapenem-resistant Acinetobacter baumannii (CRAb) is among the Gram-negative pathogens leading antimicrobial resistance globally; it is listed as a critical priority pathogen by the WHO and is implicated in hospital-acquired infections and outbreaks, particularly in critically ill patients. Recent reports from Lebanon describe increasing rates of infection with CRAb, hence the need to develop concerted interventions to control its spread. We set to describe the impact of combining antimicrobial stewardship and infection control measures on resistance rates and colonization pressure of CRAb in the intensive care units of a tertiary care center in Lebanon before the COVID-19 pandemic. The antimicrobial stewardship program introduced a carbapenem-sparing initiative in April 2019. During the same period, infection control interventions involved focused screening, monitoring, and tracking of CRAb, as well as compliance with specific measures. From January 2018 to January 2020, we report a statistically significant decrease in carbapenem consumption and a decrease in resistance rates of isolated A. baumannii. The colonization pressure of CRAb also decreased significantly, reaching record low levels at the end of the intervention period. The results indicate that a multidisciplinary approach and combined interventions between the stewardship and infection control teams can lead to a sustained reduction in resistance rates and CRAb spread in ICUs.

Microorganisms ; 10(5)2022 May 11.
Article in English | MEDLINE | ID: covidwho-1847378


Many healthcare centers around the world have reported the surge of Candida auris (C. auris) outbreaks during the COVID-19 pandemic, especially among intensive care unit (ICU) patients. This is a retrospective study conducted at the American University of Beirut Medical Center (AUBMC) between 1 October 2020 and 15 June 2021, to identify risk factors for acquiring C. auris in patients with severe COVID-19 infection and to evaluate the impact of C. auris on mortality in patients admitted to the ICU during that period. Twenty-four non-COVID-19 (COV-) patients were admitted to ICUs at AUBMC during that period and acquired C. auris (C. auris+/COV-). Thirty-two patients admitted with severe COVID-19 (COV+) acquired C. auris (C. auris+/COV+), and 130 patients had severe COVID-19 without C. auris (C. auris-/COV+). Bivariable analysis between the groups of (C. auris+/COV+) and (C. auris-/COV+) showed that higher quick sequential organ failure assessment (qSOFA) score (p < 0.001), prolonged length of stay (LOS) (p = 0.02), and the presence of a urinary catheter (p = 0.015) or of a central venous catheter (CVC) (p = 0.01) were associated with positive culture for C. auris in patients with severe COVID-19. The multivariable analysis showed that prolonged LOS (p = 0.008) and a high qSOFA score (p < 0.001) were the only risk factors independently associated with positive culture for C. auris. Increased LOS (p = 0.02), high "Candida score" (p = 0.01), and septic shock (p < 0.001) were associated with increased mortality within 30 days of positive culture for C. auris. Antifungal therapy for at least 7 days (p = 0.03) appeared to decrease mortality within 30 days of positive culture for C. auris. Only septic shock was associated with increased mortality in patients with C. auris (p = 0.006) in the multivariable analysis. C. auris is an emerging pathogen that constitutes a threat to the healthcare sector.

Antibiotics (Basel) ; 10(11)2021 Oct 29.
Article in English | MEDLINE | ID: covidwho-1488467


The COVID-19 pandemic is expected to worsen the global problem of antimicrobial resistance (AMR). There is a heightened interest in understanding this effect and to develop antimicrobial stewardship (AMS) interventions accordingly to curb this threat. Our paper aims to evaluate the potential magnitude of COVID-19 on AMR and AMS with a focus on the countries of the Arab league, given the social, political, and economic environments. We also evaluate obstacles in applying the rational use of antibiotics, monitoring resistance trends in the midst of the pandemic, and evaluating the impact of the economic crisis in some countries. We aim to raise awareness about the potential effects of antibiotic overuse during the pandemic and to propose practical approaches to tackle this issue.

World J Emerg Surg ; 16(1): 46, 2021 09 10.
Article in English | MEDLINE | ID: covidwho-1403246


On January 2020, the WHO Director General declared that the outbreak constitutes a Public Health Emergency of International Concern. The world has faced a worldwide spread crisis and is still dealing with it. The present paper represents a white paper concerning the tough lessons we have learned from the COVID-19 pandemic. Thus, an international and heterogenous multidisciplinary panel of very differentiated people would like to share global experiences and lessons with all interested and especially those responsible for future healthcare decision making. With the present paper, international and heterogenous multidisciplinary panel of very differentiated people would like to share global experiences and lessons with all interested and especially those responsible for future healthcare decision making.

COVID-19/epidemiology , Global Health , Pandemics , Biomedical Research , COVID-19/diagnosis , COVID-19/therapy , COVID-19 Vaccines , Delivery of Health Care/organization & administration , Health Policy , Health Services Accessibility , Health Status Disparities , Healthcare Disparities , Humans , International Cooperation , Mass Vaccination/organization & administration , Pandemics/prevention & control , Politics , Primary Health Care/organization & administration , Telemedicine/organization & administration
Int J Antimicrob Agents ; 58(4): 106409, 2021 Oct.
Article in English | MEDLINE | ID: covidwho-1330851


Since the start of the COVID-19 pandemic, there has been concern about the concomitant rise of antimicrobial resistance. While bacterial co-infections seem rare in COVID-19 patients admitted to hospital wards and intensive care units (ICUs), an increase in empirical antibiotic use has been described. In the ICU setting, where antibiotics are already abundantly-and often inappropriately-prescribed, the need for an ICU-specific antimicrobial stewardship programme is widely advocated. Apart from essentially warning against the use of antibacterial drugs for the treatment of a viral infection, other aspects of ICU antimicrobial stewardship need to be considered in view of the clinical course and characteristics of COVID-19. First, the distinction between infectious and non-infectious (inflammatory) causes of respiratory deterioration during an ICU stay is difficult, and the much-debated relevance of fungal and viral co-infections adds to the complexity of empirical antimicrobial prescribing. Biomarkers such as procalcitonin for the decision to start antibacterial therapy for ICU nosocomial infections seem to be more promising in COVID-19 than non-COVID-19 patients. In COVID-19 patients, cytomegalovirus reactivation is an important factor to consider when assessing patients infected with SARS-CoV-2 as it may have a role in modulating the patient immune response. The diagnosis of COVID-19-associated invasive aspergillosis is challenging because of the lack of sensitivity and specificity of the available tests. Furthermore, altered pharmacokinetic/pharmacodynamic properties need to be taken into account when prescribing antimicrobial therapy. Future research should now further explore the 'known unknowns', ideally with robust prospective study designs.

Anti-Bacterial Agents/therapeutic use , Antimicrobial Stewardship/methods , COVID-19 , Cross Infection/diagnosis , Anti-Bacterial Agents/pharmacokinetics , Antimicrobial Stewardship/organization & administration , Biomarkers/analysis , COVID-19/drug therapy , Coinfection/drug therapy , Coinfection/microbiology , Cross Infection/drug therapy , Cytomegalovirus Infections/drug therapy , Cytomegalovirus Infections/virology , Humans , Intensive Care Units , Invasive Pulmonary Aspergillosis/diagnosis , Invasive Pulmonary Aspergillosis/drug therapy , Virus Activation/drug effects
J Epidemiol Glob Health ; 11(3): 257-259, 2021 09.
Article in English | MEDLINE | ID: covidwho-1315946

COVID-19 , Humans , SARS-CoV-2
Pathogens ; 10(2)2021 Feb 03.
Article in English | MEDLINE | ID: covidwho-1060768


Candida auris is an emerging fungal pathogen considered as a global health threat. Recently there has been growing concern regarding drug resistance, difficulty in identification, as well as problems with eradication. Although outbreaks have been reported throughout the globe including from several Arab countries, there were no previous reports from Lebanon. We herein report the first cases of C. auris infection from the American University of Beirut Medical Center, a tertiary care center in Lebanon describing the clinical features of the affected patients in addition to the infection control investigation and applied interventions to control the outbreak. Fourteen patients with C. auris infection/colonization identified using MALDI-TOF and VITEK 2- Compact system were reported over a period of 13 weeks. Patients were admitted to four separate critical care units. All of them came through the emergency room and had comorbid conditions. Half of the patients were infected with COVID-19 prior to isolation of the C. auris. C. auris was isolated from blood (two isolates), urine (three isolates), respiratory tract (10 isolates) and skin (one isolate). All the patients had received broad spectrum antibiotics prior to isolation of C. auris. Six patients received antifungal treatment, while the remaining eight patients were considered colonized. Environmental cultures were taken from all four units and failed to isolate the organism from any cultured surfaces. A series of interventions were initiated by the Infection Prevention and Control team to contain the outbreak. Rapid detection and reporting of cases are essential to prevent further hospital transmission. A national standardized infection control registry needs to be established to identify widespread colonization.