Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 19 de 19
Filter
1.
Int J Infect Dis ; 120: 150-157, 2022 Jul.
Article in English | MEDLINE | ID: covidwho-1783424

ABSTRACT

OBJECTIVES: To conduct a diagnostic validation study of SARS-CoV-2 diagnostic kits. METHODS: We compared SARS-CoV-2 diagnostic test results from 3 RT-PCR assays used by the Zambian government between November 2020 and February 2021 (Panther Fusion assay, Da An Gene's 2019-nCoV RNA kit and Maccura's PCR Kit) with the Altona RealStar RT-PCR kit which served as the gold standard. We also evaluated results from rapid antigen testing and whether comorbidities were linked with increased odds of infection. RESULTS: We recruited 244 participants, 61% (149/244) were positive by at least 1 PCR assay. Da An Gene, Maccura, and Panther Fusion assays had sensitivities of 0.0% (95% confidence interval [CI] 0%-41%), 27.1% (95% CI 15%-42%), and 76% (95% CI 65%-85%), respectively, but specificity was low (<85% for all 3 assays). HIV and TB were not associated with SARS-CoV-2, whereas female sex (OR 0.5 [0.3-0.9], p = 0.026) and chronic pulmonary disease (0.1 [0.0-0.8], p = 0.031) were associated with lower odds of SARS-CoV-2 infection. Of 44 samples, 84% sequenced were Beta variant. CONCLUSIONS: The RT-PCR assays evaluated did not meet WHO recommended minimum sensitivity of 80%. Local diagnostic validation studies should be embedded within preparedness plans for future outbreaks to improve the public health response.

2.
Int J Infect Dis ; 2022 Mar 25.
Article in English | MEDLINE | ID: covidwho-1757409

ABSTRACT

BACKGROUND: The unprecedented and ongoing COVID-19 pandemic has exposed weaknesses in African countries' health systems. The impact of shifted focus on COVID-19 for the past 2 years on routine health services, especially those for the epidemics of Tuberculosis, HIV/AIDS and Malaria, have been dramatic in both quantity and quality. METHODS: In this article, we reflect on the COVID-19 related disruptions on the Tuberculosis, HIV/AIDS and Malaria routine health services across Africa. RESULTS: The COVID-19 pandemic resulted in disruptions of routine health services and diversion of already limited available resources in sub-Saharan Africa. As a result, disease programs like TB, malaria and HIV have recorded gaps in prevention and treatment with the prospects of reversing gains made towards meeting global targets. The extent of the disruption is yet to be fully quantified at country level as most data available is from modelling estimates before and during the pandemic. CONCLUSIONS: Accurate country-level data is required to convince donors and governments to invest more into revamping these health services and help prepare for managing future pandemics without disruption of routine services. Increasing government expenditure on health is a critical part of Africa's economic policy. Strengthening health systems at various levels to overcome the negative impacts of COVID-19, and preparing for future epidemics will require strong visionary political leadership. Innovations in service delivery and technological adaptations are required as countries aim to limit disruptions to routine services.

4.
Int J Infect Dis ; 113 Suppl 1: S16-S21, 2021 Dec.
Article in English | MEDLINE | ID: covidwho-1575135

ABSTRACT

In this perspective, we discuss the impact of COVID-19 on tuberculosis (TB)/HIV health services and approaches to mitigating the growing burden of these three colliding epidemics in sub-Saharan Africa (SSA). SSA countries bear significantly high proportions of TB and HIV cases reported worldwide, compared to countries in the West. Whilst COVID-19 epidemiology appears to vary across Africa, most countries in this region have reported relatively lower-case counts compared to the West. Nevertheless, the COVID-19 pandemic has added an additional burden to already overstretched health systems in SSA, which, among other things, have been focused on the longstanding dual epidemics of TB and HIV. As with these dual epidemics, inadequate resources and poor case identification and reporting may be contributing to underestimations of the COVID-19 case burden in SSA. Modelling studies predict that the pandemic-related disruptions in TB and HIV services will result in significant increases in associated morbidity and mortality over the next five years. Furthermore, limited empirical evidence suggests that SARS-CoV-2 coinfections with TB and HIV are associated with increased mortality risk in SSA. However, predictive models require a better evidence-base to accurately define the impact of COVID-19, not only on communicable diseases such as TB and HIV, but on non-communicable disease comorbidities. Further research is needed to assess morbidity and mortality data among both adults and children across the African continent, paying attention to geographic disparities, as well as the clinical and socio-economic determinants of COVID-19 in the setting of TB and/or HIV.


Subject(s)
COVID-19 , HIV Infections , Tuberculosis , Africa South of the Sahara/epidemiology , Child , HIV Infections/complications , HIV Infections/epidemiology , Health Services , Humans , Pandemics , SARS-CoV-2 , Tuberculosis/epidemiology
5.
Int J Infect Dis ; 113 Suppl 1: S7-S12, 2021 Dec.
Article in English | MEDLINE | ID: covidwho-1573985

ABSTRACT

The October 2020 Global TB report reviews TB control strategies and United Nations (UN) targets set in the political declaration at the September 2018 UN General Assembly high-level meeting on TB held in New York. Progress in TB care and prevention has been very slow. In 2019, TB remained the most common cause of death from a single infectious pathogen. Globally, an estimated 10.0 million people developed TB disease in 2019, and there were an estimated 1.2 million TB deaths among HIV-negative people and an additional 208, 000 deaths among people living with HIV. Adults accounted for 88% and children for 12% of people with TB. The WHO regions of South-East Asia (44%), Africa (25%), and the Western Pacific (18%) had the most people with TB. Eight countries accounted for two thirds of the global total: India (26%), Indonesia (8.5%), China (8.4%), the Philippines (6.0%), Pakistan (5.7%), Nigeria (4.4%), Bangladesh (3.6%) and South Africa (3.6%). Only 30% of the 3.5 million five-year target for children treated for TB was met. Major advances have been development of new all oral regimens for MDRTB and new regimens for preventive therapy. In 2020, the COVID-19 pandemic dislodged TB from the top infectious disease cause of mortality globally. Notably, global TB control efforts were not on track even before the advent of the COVID-19 pandemic. Many challenges remain to improve sub-optimal TB treatment and prevention services. Tuberculosis screening and diagnostic test services need to be ramped up. The major drivers of TB remain undernutrition, poverty, diabetes, tobacco smoking, and household air pollution and these need be addressed to achieve the WHO 2035 TB care and prevention targets. National programs need to include interventions for post-tuberculosis holistic wellbeing. From first detection of COVID-19 global coordination and political will with huge financial investments have led to the development of effective vaccines against SARS-CoV2 infection. The world now needs to similarly focus on development of new vaccines for TB utilizing new technological methods.


Subject(s)
COVID-19 , Tuberculosis, Miliary , Adult , Child , Humans , Nigeria , Pandemics , RNA, Viral , SARS-CoV-2
7.
EuropePMC; 2021.
Preprint in English | EuropePMC | ID: ppcovidwho-292954

ABSTRACT

Introduction: During March-December 2020, Zambia recorded 20,725 confirmed COVID-19 cases, with the first wave peaking between July and August. Of the 388 COVID-19-related deaths occurring nationwide, most occurred in the community. We report findings from COVID-19 mortality surveillance among community deaths brought to the University Teaching Hospital (UTH) mortuary in Lusaka. Methods: In Zambia, when a person dies in the community, and is brought into a health facility mortuary, they are recorded as 'brought in dead' (BID). The UTH mortuary accepts persons BID for Lusaka District, the most populated district in Zambia. We analyzed data for persons BID at UTH during 2020. We analyzed two data sources: weekly SARS-CoV-2 test results for persons BID and monthly all-cause mortality numbers among persons BID. For all-cause mortality among persons BID, monthly deaths during 2020 that were above the upper bound of the 95% confidence interval for the historic mean (2017-2019) were considered significant. Spearman's rank test was used to correlate the overall percent positivity in Zambia with all-cause mortality and SARS-CoV-2 testing among persons BID at UTH mortuary. Results: During 2020, 7,756 persons were BID at UTH (monthly range 556-810). SARS-CoV-2 testing began in April 2020, and through December 3,131 (51.9%) of 6,022 persons BID were tested. Of these, 212 (6.8%) were SARS-CoV-2 positive with weekly percent test positivity ranging from 0-32%, with the highest positivity occurring during July 2020. There were 1,139 excess persons BID from all causes at UTH mortuary in 2020 compared to the 2017-2019 mean. The monthly number of persons BID from all causes was above the upper bound of the 95% confidence interval during June-September and December. Conclusion: Increases in all-cause mortality and SARS-CoV-2 test positivity among persons BID at UTH mortuary corresponded with the first peak of the COVID-19 epidemic in June and August 2020, indicating possible increased mortality related to the COVID-19 epidemic in Zambia. Combining all-cause mortality and SARS-CoV-2 testing for persons BID provides useful information about the severity of the epidemic in Lusaka and should be implemented throughout Zambia.

8.
Clin Infect Dis ; 73(6): e1321-e1328, 2021 09 15.
Article in English | MEDLINE | ID: covidwho-1412386

ABSTRACT

BACKGROUND: Healthcare workers (HCWs) in Zambia have become infected with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the virus that causes coronavirus disease 2019 (COVID-19). However, SARS-CoV-2 prevalence among HCWs is not known in Zambia. METHODS: We conducted a cross-sectional SARS-CoV-2 prevalence survey among Zambian HCWs in 20 health facilities in 6 districts in July 2020. Participants were tested for SARS-CoV-2 infection using polymerase chain reaction (PCR) and for SARS-CoV-2 antibodies using enzyme-linked immunosorbent assay (ELISA). Prevalence estimates and 95% confidence intervals (CIs), adjusted for health facility clustering, were calculated for each test separately, and a combined measure for those who had PCR and ELISA was performed. RESULTS: In total, 660 HCWs participated in the study, with 450 (68.2%) providing a nasopharyngeal swab for PCR and 575 (87.1%) providing a blood specimen for ELISA. Sixty-six percent of participants were females, and median age was 31.5 years (interquartile range, 26.2-39.8). The overall prevalence of the combined measure was 9.3% (95% CI, 3.8%-14.7%). PCR-positive prevalence of SARS-CoV-2 was 6.6% (95% CI, 2.0%-11.1%), and ELISA-positive prevalence was 2.2% (95% CI, .5%-3.9%). CONCLUSIONS: SARS-CoV-2 prevalence among HCWs was similar to a population-based estimate (10.6%) during a period of community transmission in Zambia. Public health measures such as establishing COVID-19 treatment centers before the first cases, screening for COVID-19 symptoms among patients who access health facilities, infection prevention and control trainings, and targeted distribution of personal protective equipment based on exposure risk might have prevented increased SARS-CoV-2 transmission among Zambian HCWs.


Subject(s)
COVID-19 , SARS-CoV-2 , Adult , COVID-19/drug therapy , Cross-Sectional Studies , Female , Health Personnel , Humans , Prevalence , Zambia
10.
Lancet Glob Health ; 9(6): e773-e781, 2021 06.
Article in English | MEDLINE | ID: covidwho-1131931

ABSTRACT

BACKGROUND: Between March and December, 2020, more than 20 000 laboratory-confirmed cases of SARS-CoV-2 infection were reported in Zambia. However, the number of SARS-CoV-2 infections is likely to be higher than the confirmed case counts because many infected people have mild or no symptoms, and limitations exist with regard to testing capacity and surveillance systems in Zambia. We aimed to estimate SARS-CoV-2 prevalence in six districts of Zambia in July, 2020, using a population-based household survey. METHODS: Between July 4 and July 27, 2020, we did a cross-sectional cluster-sample survey of households in six districts of Zambia. Within each district, 16 standardised enumeration areas were randomly selected as primary sampling units using probability proportional to size. 20 households from each standardised enumeration area were selected using simple random sampling. All members of selected households were eligible to participate. Consenting participants completed a questionnaire and were tested for SARS-CoV-2 infection using real-time PCR (rtPCR) and anti-SARS-CoV-2 antibodies using ELISA. Prevalence estimates, adjusted for the survey design, were calculated for each diagnostic test separately, and combined. We applied the prevalence estimates to census population projections for each district to derive the estimated number of SARS-CoV-2 infections. FINDINGS: Overall, 4258 people from 1866 households participated in the study. The median age of participants was 18·2 years (IQR 7·7-31·4) and 50·6% of participants were female. SARS-CoV-2 prevalence for the combined measure was 10·6% (95% CI 7·3-13·9). The rtPCR-positive prevalence was 7·6% (4·7-10·6) and ELISA-positive prevalence was 2·1% (1·1-3·1). An estimated 454 708 SARS-CoV-2 infections (95% CI 312 705-596 713) occurred in the six districts between March and July, 2020, compared with 4917 laboratory-confirmed cases reported in official statistics from the Zambia National Public Health Institute. INTERPRETATION: The estimated number of SARS-CoV-2 infections was much higher than the number of reported cases in six districts in Zambia. The high rtPCR-positive SARS-CoV-2 prevalence was consistent with observed community transmission during the study period. The low ELISA-positive SARS-CoV-2 prevalence might be associated with mitigation measures instituted after initial cases were reported in March, 2020. Zambia should monitor patterns of SARS-CoV-2 prevalence and promote measures that can reduce transmission. FUNDING: US Centers for Disease Control and Prevention.


Subject(s)
COVID-19/epidemiology , Adolescent , Adult , Child , Child, Preschool , Cluster Analysis , Cross-Sectional Studies , Female , Health Surveys , Humans , Infant , Infant, Newborn , Male , Middle Aged , Prevalence , Young Adult , Zambia/epidemiology
11.
MMWR Morb Mortal Wkly Rep ; 70(8): 280-282, 2021 Feb 26.
Article in English | MEDLINE | ID: covidwho-1102701

ABSTRACT

The first laboratory-confirmed cases of coronavirus disease 2019 (COVID-19), the illness caused by SARS-CoV-2, in Zambia were detected in March 2020 (1). Beginning in July, the number of confirmed cases began to increase rapidly, first peaking during July-August, and then declining in September and October (Figure). After 3 months of relatively low case counts, COVID-19 cases began rapidly rising throughout the country in mid-December. On December 18, 2020, South Africa published the genome of a SARS-CoV-2 variant strain with several mutations that affect the spike protein (2). The variant included a mutation (N501Y) associated with increased transmissibility.†,§ SARS-CoV-2 lineages with this mutation have rapidly expanded geographically.¶,** The variant strain (PANGO [Phylogenetic Assignment of Named Global Outbreak] lineage B.1.351††) was first detected in the Eastern Cape Province of South Africa from specimens collected in early August, spread within South Africa, and appears to have displaced the majority of other SARS-CoV-2 lineages circulating in that country (2). As of January 10, 2021, eight countries had reported cases with the B.1.351 variant. In Zambia, the average number of daily confirmed COVID-19 cases increased 16-fold, from 44 cases during December 1-10 to 700 during January 1-10, after detection of the B.1.351 variant in specimens collected during December 16-23. Zambia is a southern African country that shares substantial commerce and tourism linkages with South Africa, which might have contributed to the transmission of the B.1.351 variant between the two countries.


Subject(s)
COVID-19/diagnosis , COVID-19/virology , SARS-CoV-2/genetics , Adult , COVID-19/epidemiology , COVID-19 Nucleic Acid Testing , Female , Humans , Male , Middle Aged , SARS-CoV-2/isolation & purification , Zambia/epidemiology
12.
Front Public Health ; 8: 596944, 2020.
Article in English | MEDLINE | ID: covidwho-979060

ABSTRACT

The World Health Organization defines a zoonosis as any infection naturally transmissible from vertebrate animals to humans. The pandemic of Coronavirus disease (COVID-19) caused by SARS-CoV-2 has been classified as a zoonotic disease, however, no animal reservoir has yet been found, so this classification is premature. We propose that COVID-19 should instead be classified an "emerging infectious disease (EID) of probable animal origin." To explore if COVID-19 infection fits our proposed re-categorization vs. the contemporary definitions of zoonoses, we reviewed current evidence of infection origin and transmission routes of SARS-CoV-2 virus and described this in the context of known zoonoses, EIDs and "spill-over" events. Although the initial one hundred COVID-19 patients were presumably exposed to the virus at a seafood Market in China, and despite the fact that 33 of 585 swab samples collected from surfaces and cages in the market tested positive for SARS-CoV-2, no virus was isolated directly from animals and no animal reservoir was detected. Elsewhere, SARS-CoV-2 has been detected in animals including domesticated cats, dogs, and ferrets, as well as captive-managed mink, lions, tigers, deer, and mice confirming zooanthroponosis. Other than circumstantial evidence of zoonotic cases in mink farms in the Netherlands, no cases of natural transmission from wild or domesticated animals have been confirmed. More than 40 million human COVID-19 infections reported appear to be exclusively through human-human transmission. SARS-CoV-2 virus and COVID-19 do not meet the WHO definition of zoonoses. We suggest SARS-CoV-2 should be re-classified as an EID of probable animal origin.


Subject(s)
COVID-19/classification , Communicable Diseases, Emerging , SARS-CoV-2/classification , Zoonoses , Animals , Animals, Wild , China , Communicable Diseases, Emerging/classification , Communicable Diseases, Emerging/transmission , Communicable Diseases, Emerging/virology , Humans , World Health Organization , Zoonoses/classification , Zoonoses/transmission , Zoonoses/virology
13.
MMWR Morb Mortal Wkly Rep ; 69(42): 1547-1548, 2020 Oct 23.
Article in English | MEDLINE | ID: covidwho-890755

ABSTRACT

Zambia is a landlocked, lower-middle income country in southern Africa, with a population of 17 million (1). The first known cases of coronavirus disease 2019 (COVID-19) in Zambia occurred in a married couple who had traveled to France and were subject to port-of-entry surveillance and subsequent remote monitoring of travelers with a history of international travel for 14 days after arrival. They were identified as having suspected cases on March 18, 2020, and tested for COVID-19 after developing respiratory symptoms during the 14-day monitoring period. In March 2020, the Zambia National Public Health Institute (ZNPHI) defined a suspected case of COVID-19 as 1) an acute respiratory illness in a person with a history of international travel during the 14 days preceding symptom onset; or 2) acute respiratory illness in a person with a history of contact with a person with laboratory-confirmed COVID-19 in the 14 days preceding symptom onset; or 3) severe acute respiratory illness requiring hospitalization; or 4) being a household or close contact of a patient with laboratory-confirmed COVID-19. This definition was adapted from World Health Organization (WHO) interim guidance issued March 20, 2020, on global surveillance for COVID-19 (2) to also include asymptomatic contacts of persons with confirmed COVID-19. Persons with suspected COVID-19 were identified through various mechanisms, including port-of-entry surveillance, contact tracing, health care worker (HCW) testing, facility-based inpatient screening, community-based screening, and calls from the public into a national hotline administered by the Disaster Management and Mitigation Unit and ZNPHI. Port-of-entry surveillance included an arrival screen consisting of a temperature scan, report of symptoms during the preceding 14 days, and collection of a history of travel and contact with persons with confirmed COVID-19 in the 14 days before arrival in Zambia, followed by daily remote telephone monitoring for 14 days. Travelers were tested for SARS-CoV-2, the virus that causes COVID-19, if they were symptomatic upon arrival or developed symptoms during the 14-day monitoring period. Persons with suspected COVID-19 were tested as soon as possible after evaluation for respiratory symptoms or within 7 days of last known exposure (i.e., travel or contact with a confirmed case). All COVID-19 diagnoses were confirmed using real-time reverse transcription-polymerase chain reaction (RT-PCR) testing (SARS-CoV-2 Nucleic Acid Detection Kit, Maccura) of nasopharyngeal specimens; all patients with confirmed COVID-19 were admitted into institutional isolation at the time of laboratory confirmation, which was generally within 36 hours. COVID-19 patients were deemed recovered and released from isolation after two consecutive PCR-negative test results ≥24 hours apart. A Ministry of Health memorandum was released on April 13, 2020, mandating testing in public facilities of 1) all persons admitted to medical and pediatric wards regardless of symptoms; 2) all patients being admitted to surgical and obstetric wards, regardless of symptoms; 3) any outpatient with fever, cough, or shortness of breath; and 4) any facility or community death in a person with respiratory symptoms, and 5) biweekly screening of all HCWs in isolation centers and health facilities where persons with COVID-19 had been evaluated. This report describes the first 100 COVID-19 cases reported in Zambia, during March 18-April 28, 2020.


Subject(s)
Coronavirus Infections/diagnosis , Coronavirus Infections/epidemiology , Pneumonia, Viral/diagnosis , Pneumonia, Viral/epidemiology , Public Health Surveillance , Adult , COVID-19 , COVID-19 Testing , COVID-19 Vaccines , Clinical Laboratory Techniques , Contact Tracing , Female , Humans , Male , Pandemics , Travel-Related Illness , Zambia/epidemiology
14.
BMJ Glob Health ; 5(10)2020 10.
Article in English | MEDLINE | ID: covidwho-841538

ABSTRACT

Lockdown measures have been introduced worldwide to contain the transmission of COVID-19. However, the term 'lockdown' is not well-defined. Indeed, WHO's reference to 'so-called lockdown measures' indicates the absence of a clear and universally accepted definition of the term 'lockdown'. We propose a definition of 'lockdown' based on a two-by-two matrix that categorises different communicable disease measures based on whether they are compulsory or voluntary; and whether they are targeted at identifiable individuals or facilities, or whether they are applied indiscriminately to a general population or area. Using this definition, we describe the design, timing and implementation of lockdown measures in nine countries in sub-Saharan Africa: Ghana, Nigeria, South Africa, Sierra Leone, Sudan, Tanzania, Uganda, Zambia and Zimbabwe. While there were some commonalities in the implementation of lockdown across these countries, a more notable finding was the variation in the design, timing and implementation of lockdown measures. We also found that the number of reported cases is heavily dependent on the number of tests carried out, and that testing rates ranged from 2031 to 63 928 per million population up until 7 September 2020. The reported number of COVID-19 deaths per million population also varies (0.4 to 250 up until 7 September 2020), but is generally low when compared with countries in Europe and North America. While lockdown measures may have helped inhibit community transmission, the pattern and nature of the epidemic remains unclear. However, there are signs of lockdown harming health by affecting the functioning of the health system and causing social and economic disruption.


Subject(s)
Communicable Disease Control , Coronavirus Infections/prevention & control , Pandemics/prevention & control , Pneumonia, Viral/prevention & control , Africa South of the Sahara , Betacoronavirus , COVID-19 , COVID-19 Testing , Clinical Laboratory Techniques/statistics & numerical data , Communicable Disease Control/methods , Communicable Disease Control/statistics & numerical data , Coronavirus Infections/diagnosis , Coronavirus Infections/epidemiology , Humans , Pneumonia, Viral/diagnosis , Pneumonia, Viral/epidemiology , SARS-CoV-2
15.
Int J Infect Dis ; 102: 455-459, 2021 Jan.
Article in English | MEDLINE | ID: covidwho-816545

ABSTRACT

Since its first discovery in December 2019 in Wuhan, China, COVID-19, caused by the novel coronavirus SARS-CoV-2, has spread rapidly worldwide. While African countries were relatively spared initially, the initial low incidence of COVID-19 cases was not sustained for long due to continuing travel links between China, Europe and Africa. In preparation, Zambia had applied a multisectoral national epidemic disease surveillance and response system resulting in the identification of the first case within 48 h of the individual entering the country by air travel from a trip to France. Contact tracing showed that SARS-CoV-2 infection was contained within the patient's household, with no further spread to attending health care workers or community members. Phylogenomic analysis of the patient's SARS-CoV-2 strain showed that it belonged to lineage B.1.1., sharing the last common ancestor with SARS-CoV-2 strains recovered from South Africa. At the African continental level, our analysis showed that B.1 and B.1.1 lineages appear to be predominant in Africa. Whole genome sequence analysis should be part of all surveillance and case detection activities in order to monitor the origin and evolution of SARS-CoV-2 lineages across Africa.


Subject(s)
COVID-19/virology , Genome, Viral , SARS-CoV-2/genetics , Adult , Africa , Humans , Male , Phylogeny , SARS-CoV-2/classification , Travel , Zambia
16.
Int J Infect Dis ; 94: 151-153, 2020 05.
Article in English | MEDLINE | ID: covidwho-145272
SELECTION OF CITATIONS
SEARCH DETAIL