Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Add filters

Document Type
Year range
Mol Cell Endocrinol ; 529: 111260, 2021 06 01.
Article in English | MEDLINE | ID: covidwho-1157602


Angiotensin converting enzyme 2 (ACE2), a component of the renin-angiotensin system (RAS), has been identified as the receptor for the SARS-CoV-2. Several RAS components including ACE2 and its substrate Ang II are present in both eye and skin, two stratified squamous epithelial tissues that isolate organisms from external environment. Our recent findings in cornea and others in both skin and eye suggest contribution of this system, and specifically of ACE2 in variety of physiological and pathological responses of these organ systems. This review will focus on the role RAS system plays in both skin and cornea, and will specifically discuss our recent findings on ACE2 in corneal epithelial inflammation, as well as potential implications of ACE2 in patients with COVID-19.

Angiotensin-Converting Enzyme 2/metabolism , Epithelium, Corneal/enzymology , Receptors, Coronavirus/metabolism , Skin/enzymology , Autophagy , COVID-19/enzymology , COVID-19/virology , Humans , Inflammation/enzymology , Renin-Angiotensin System/physiology , Wound Healing
FASEB J ; 34(8): 10505-10515, 2020 08.
Article in English | MEDLINE | ID: covidwho-602184


Angiotensin converting enzyme 2 (ACE2) plays an important role in inflammation, which is attributable at least, in part, to the conversion of the pro-inflammatory angiotensin (Ang) II peptide into angiotensin 1-7 (Ang 1-7), a peptide which opposes the actions of AngII. ACE2 and AngII are present in many tissues but information on the cornea is lacking. We observed that mice deficient in the Ace2 gene (Ace2-/- ), developed a cloudy cornea phenotype as they aged. Haze occupied the central cornea, accompanied by corneal edema and neovascularization. In severe cases with marked chronic inflammation, a cell-fate switch from a transparent corneal epithelium to a keratinized, stratified squamous, psoriasiform-like epidermis was observed. The stroma contained a large number of CD11c, CD68, and CD3 positive cells. Corneal epithelial debridement experiments in young ACE2-deficient mice showed normal appearing corneas, devoid of haze. We hypothesized, however, that these mice are "primed" for a corneal inflammatory response, which once initiated, would persist. In vitro studies reveal that interleukins (IL-1a, IL-1b), chemokines (CCL2, CXCL8), and TNF-α, are all significantly elevated, resulting in a cytokine storm-like phenotype. This phenotype could be partially rescued by treatment with the AngII type 1 receptor (AT1R) antagonist, losartan, suggesting that the observed effect was mediated by AngII acting on its main receptor. Since the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) utilizes human ACE2 as the receptor for entry with subsequent downregulation of ACE2, corneal inflammation in Ace2-/- mice may have a similar mechanism with that in COVID-19 patients. Thus the Ace2-/- cornea, because of easy accessibility, may provide an attractive model to explore the molecular mechanisms, immunological changes, and treatment modalities in patients with COVID-19.

Angiotensin-Converting Enzyme 2/genetics , Cornea/pathology , Cytokine Release Syndrome/physiopathology , Disease Models, Animal , Angiotensin II/metabolism , Animals , COVID-19 , Cells, Cultured , Chemokines/metabolism , Epithelial Cells/metabolism , Humans , Interleukins/metabolism , Mice , Mice, Inbred C57BL , Mice, Knockout , SARS-CoV-2 , THP-1 Cells , Tumor Necrosis Factor-alpha/metabolism