Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
JMIR Serious Games ; 10(2): e31685, 2022 Jun 10.
Article in English | MEDLINE | ID: covidwho-1923846


BACKGROUND: Postural balance is compromised in people with low back pain, possibly by changes in motor control of the trunk. Augmenting exercising interventions with sensor-based feedback on trunk posture and movements might improve postural balance in people with low back pain. OBJECTIVE: We hypothesized that exercising with feedback on trunk movements reduces sway in anterior-posterior direction during quiet standing in people with low back pain. Secondary outcomes were lumbar spine and hip movement assessed during box lift and waiter bow tasks, as well as participant-reported outcomes. Adherence to the exercising intervention was also examined. METHODS: A randomized controlled trial was conducted with the intervention group receiving unsupervised home exercises with visual feedback using the Valedo Home, an exergame based on 2 inertial measurement units. The control group received no intervention. Outcomes were recorded by blinded staff during 4 visits (T1-T4) at University Hospital Zurich. The intervention group performed 9 sessions of 20 minutes in the 3 weeks between T2 and T3 and were instructed to exercise at their own convenience between T3 and T4. Postural balance was assessed on a force platform. Lumbar spine and hip angles were obtained from 3 inertial measurement units. The assessments included pain intensity, disability, quality of life, and fear of movement questionnaires. RESULTS: A total of 32 participants with nonspecific low back pain completed the first assessment T1, and 27 (84%) participants were randomized at T2 (n=14, 52% control and n=13, 48% intervention). Intention-to-treat analysis revealed no significant difference in change in anterior-posterior sway direction during the intervention period with a specified schedule (T2-T3) between the groups (W=99; P=.36; r=0.07). None of the outcomes showed significant change in accordance with our hypotheses. The intervention group completed a median of 61% (55/90; range 2%-99%) of the exercises in the predefined training program. Adherence was higher in the first intervention period with a specified schedule. CONCLUSIONS: The intervention had no significant effect on postural balance or other outcomes, but the wide range of adherence and a limited sample size challenged the robustness of these conclusions. Future work should increase focus on improving adherence to digital interventions. TRIAL REGISTRATION: NCT04364243; INTERNATIONAL REGISTERED REPORT IDENTIFIER (IRRID): RR2-10.2196/26982.

Physiol Meas ; 41(10): 10TR01, 2020 11 10.
Article in English | MEDLINE | ID: covidwho-780288


Coronavirus disease (COVID-19), caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is rapidly spreading across the globe. The clinical spectrum of SARS-CoV-2 pneumonia requires early detection and monitoring, within a clinical environment for critical cases and remotely for mild cases, with a large spectrum of symptoms. The fear of contamination in clinical environments has led to a dramatic reduction in on-site referrals for routine care. There has also been a perceived need to continuously monitor non-severe COVID-19 patients, either from their quarantine site at home, or dedicated quarantine locations (e.g. hotels). In particular, facilitating contact tracing with proximity and location tracing apps was adopted in many countries very rapidly. Thus, the pandemic has driven incentives to innovate and enhance or create new routes for providing healthcare services at distance. In particular, this has created a dramatic impetus to find innovative ways to remotely and effectively monitor patient health status. In this paper, we present a review of remote health monitoring initiatives taken in 20 states during the time of the pandemic. We emphasize in the discussion particular aspects that are common ground for the reviewed states, in particular the future impact of the pandemic on remote health monitoring and consideration on data privacy.

Coronavirus Infections/diagnosis , Coronavirus Infections/physiopathology , Monitoring, Physiologic/methods , Pneumonia, Viral/diagnosis , Pneumonia, Viral/physiopathology , Telemedicine/methods , COVID-19 , Coronavirus Infections/epidemiology , Humans , Pandemics , Pneumonia, Viral/epidemiology