Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
Critical Care ; 26:1-15, 2022.
Article in English | ProQuest Central | ID: covidwho-2038848

ABSTRACT

Acute neuropsychiatric impairments occur in over 70% of patients with acute lung injury. Mechanical ventilation is a well-known precipitant of acute lung injury and is strongly associated with the development of acute delirium and anxiety phenotypes. In prior studies, we demonstrated that IL-6 mediates neuropathological changes in the frontal cortex and hippocampus of animals with mechanical ventilation-induced brain injury;however, the effect of systemic IL-6 inhibition on structural and functional acute neuropsychiatric phenotypes is not known. We hypothesized that a murine model of mechanical ventilation-induced acute lung injury (VILI) would induce neural injury to the amygdala and hippocampus, brain regions that are implicated in diverse neuropsychiatric conditions, and corresponding delirium- and anxiety-like functional impairments. Furthermore, we hypothesized that these structural and functional changes would reverse with systemic IL-6 inhibition. VILI was induced using high tidal volume (35 cc/kg) mechanical ventilation. Cleaved caspase-3 (CC3) expression was quantified as a neural injury marker and found to be significantly increased in the VILI group compared to spontaneously breathing or anesthetized and mechanically ventilated mice with 10 cc/kg tidal volume. VILI mice treated with systemic IL-6 inhibition had significantly reduced amygdalar and hippocampal CC3 expression compared to saline-treated animals and demonstrated amelioration in acute neuropsychiatric behaviors in open field, elevated plus maze, and Y-maze tests. Overall, these data provide evidence of a pathogenic role of systemic IL-6 in mediating structural and functional acute neuropsychiatric symptoms in VILI and provide preclinical justification to assess IL-6 inhibition as a potential intervention to ameliorate acute neuropsychiatric phenotypes following VILI.

2.
Am J Reprod Immunol ; 88(2): e13559, 2022 08.
Article in English | MEDLINE | ID: covidwho-1831916

ABSTRACT

PROBLEM: We evaluated eculizumab, a complement protein C5 inhibitor, for treatment of severe COVID-19 in pregnant and postpartum individuals. METHOD OF STUDY: Protocol ECU-COV-401 (clinicaltrials.gov NCT04355494) is an open label, multicenter, Expanded Access Program (EAP), evaluating eculizumab for treatment of severe COVID-19. Participants enrolled at our center from August 2020 to February 2021. Hospitalized patients were eligible if they had severe COVID-19 with bilateral pulmonary infiltrates and oxygen requirement. Eculizumab was administered on day 1 (1200 mg IV) with additional doses if still hospitalized (1200 mg IV on Days 4 and 8; 900 mg IV on Days 15 and 22; optional doses on Days 12 and 18). The primary outcome was survival at Day 15. Secondary outcomes included survival at Day 29, need for mechanical ventilation, and duration of hospital stay. We evaluated pharmacokinetic and pharmacodynamic data, safety, and adverse outcomes. RESULTS: Eight participants were enrolled at the Cedars-Sinai Medical Center, six during pregnancy (mean 30 ± 4.0 weeks) and two in the postpartum period. Baseline oxygen requirement ranged from 2 L/min nasal cannula to 12 L/min by non-rebreather mask. The median number of doses of eculizumab was 2 (range 1-3); the median time to hospital discharge was 5.5 days (range 3-12). All participants met the primary outcome of survival at Day 15, and all were alive and free of mechanical ventilation at Day 29. In three participants we demonstrated that free C5 and soluble C5b-9 levels decreased following treatment. There were no serious adverse maternal or neonatal events attributed to eculizumab at 3 months. CONCLUSION: We describe use of eculizumab to treat severe COVID-19 in a small series of pregnant and postpartum adults. A larger, controlled study in pregnancy is indicated.


Subject(s)
Antibodies, Monoclonal, Humanized , COVID-19 , Adult , Antibodies, Monoclonal, Humanized/therapeutic use , COVID-19/drug therapy , Complement System Proteins , Female , Humans , Infant, Newborn , Oxygen , Pregnancy , SARS-CoV-2 , Treatment Outcome
3.
Am J Respir Cell Mol Biol ; 65(4): 403-412, 2021 10.
Article in English | MEDLINE | ID: covidwho-1237350

ABSTRACT

Mechanical ventilation is a known risk factor for delirium, a cognitive impairment characterized by dysfunction of the frontal cortex and hippocampus. Although IL-6 is upregulated in mechanical ventilation-induced lung injury (VILI) and may contribute to delirium, it is not known whether the inhibition of systemic IL-6 mitigates delirium-relevant neuropathology. To histologically define neuropathological effects of IL-6 inhibition in an experimental VILI model, VILI was simulated in anesthetized adult mice using a 35 cc/kg tidal volume mechanical ventilation model. There were two control groups, as follow: 1) spontaneously breathing or 2) anesthetized and mechanically ventilated with 10 cc/kg tidal volume to distinguish effects of anesthesia from VILI. Two hours before inducing VILI, mice were treated with either anti-IL-6 antibody, anti-IL-6 receptor antibody, or saline. Neuronal injury, stress, and inflammation were assessed using immunohistochemistry. CC3 (cleaved caspase-3), a neuronal apoptosis marker, was significantly increased in the frontal (P < 0.001) and hippocampal (P < 0.0001) brain regions and accompanied by significant increases in c-Fos and heat shock protein-90 in the frontal cortices of VILI mice compared with control mice (P < 0.001). These findings were not related to cerebral hypoxia, and there was no evidence of irreversible neuronal death. Frontal and hippocampal neuronal CC3 were significantly reduced with anti-IL-6 antibody (P < 0.01 and P < 0.0001, respectively) and anti-IL-6 receptor antibody (P < 0.05 and P < 0.0001, respectively) compared with saline VILI mice. In summary, VILI induces potentially reversible neuronal injury and inflammation in the frontal cortex and hippocampus, which is mitigated with systemic IL-6 inhibition. These data suggest a potentially novel neuroprotective role of systemic IL-6 inhibition that justifies further investigation.


Subject(s)
Antibodies/pharmacology , Apoptosis/drug effects , Delirium/metabolism , Interleukin-6/antagonists & inhibitors , Neurons/metabolism , Ventilator-Induced Lung Injury/metabolism , Animals , Delirium/drug therapy , Delirium/pathology , Disease Models, Animal , Female , Frontal Lobe/injuries , Frontal Lobe/metabolism , Frontal Lobe/pathology , HSP90 Heat-Shock Proteins/metabolism , Hippocampus/injuries , Hippocampus/metabolism , Hippocampus/pathology , Inflammation/drug therapy , Inflammation/metabolism , Inflammation/pathology , Interleukin-6/metabolism , Mice , Neurons/pathology , Proto-Oncogene Proteins c-fos/metabolism , Repressor Proteins/metabolism , Tumor Suppressor Proteins/metabolism , Ventilator-Induced Lung Injury/drug therapy , Ventilator-Induced Lung Injury/pathology
SELECTION OF CITATIONS
SEARCH DETAIL