ABSTRACT
The rapid emergence of SARS-CoV-2 variants challenges vaccination strategies. Here, we collected 201 serum samples from persons with a single infection or multiple vaccine exposures, or both. We measured their neutralization titers against 15 natural variants and 7 variants with engineered spike mutations and analyzed antigenic diversity. Antigenic maps of primary infection sera showed that Omicron sublineages BA.2, BA.4/BA.5, and BA.2.12.1 are distinct from BA.1 and more similar to Beta/Gamma/Mu variants. Three mRNA COVID-19 vaccinations increased neutralization of BA.1 more than BA.4/BA.5 or BA.2.12.1. BA.1 post-vaccination infection elicited higher neutralization titers to all variants than three vaccinations alone, although with less neutralization to BA.2.12.1 and BA.4/BA.5. Those with BA.1 infection after two or three vaccinations had similar neutralization titer magnitude and antigenic recognition. Accounting for antigenic differences among variants when interpreting neutralization titers can aid the understanding of complex patterns in humoral immunity that informs the selection of future COVID-19 vaccine strains.
ABSTRACT
The severity of the COVID-19 pandemic and the development of multiple SARS-CoV-2 vaccines expedited vaccine 'mix and match' trials in humans and demonstrated the benefits of mixing vaccines that vary in formulation, strength, and immunogenicity. Heterologous sequential vaccination may be an effective approach for protecting against dengue, as this strategy would mimic the natural route to broad dengue protection and may overcome the imbalances in efficacy of the individual leading live attenuated dengue vaccines. Here we review 'mix and match' vaccination trials against SARS-CoV-2, HIV, and dengue virus and discuss the possible advantages and concerns of future heterologous immunization with the leading dengue vaccines. COVID-19 trials suggest that priming with a vaccine that induces strong cellular responses, such as an adenoviral vectored product, followed by heterologous boost may optimize T cell immunity. Moreover, heterologous vaccination may induce superior humoral immunity compared to homologous vaccination when the priming vaccine induces a narrower response than the boost. The HIV trials reported that heterologous vaccination was associated with broadened antigen responses and that the sequence of the vaccines significantly impacts the regimen's immunogenicity and efficacy. In heterologous dengue immunization trials, where at least one dose was with a live attenuated vaccine, all reported equivalent or increased immunogenicity compared to homologous boost, although one study reported increased reactogenicity. The three leading dengue vaccines have been evaluated for safety and efficacy in thousands of study participants but not in combination in heterologous dengue vaccine trials. Various heterologous regimens including different combinations and sequences should be trialed to optimize cellular and humoral immunity and the breadth of the response while limiting reactogenicity. A blossoming field dedicated to more accurate correlates of protection and enhancement will help confirm the safety and efficacy of these strategies.
Subject(s)
COVID-19 , Dengue Vaccines , Dengue , HIV Infections , Humans , Vaccines, Attenuated , COVID-19 Vaccines , Pandemics , SARS-CoV-2 , COVID-19/prevention & control , Vaccination , HIV Infections/prevention & control , Antibodies, Viral , Immunogenicity, VaccineABSTRACT
The rapid spread of the highly contagious Omicron variant of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) along with its high number of mutations in the spike gene has raised alarms about the effectiveness of current medical countermeasures. To address this concern, we measured the neutralization of the Omicron BA.1 variant pseudovirus by postvaccination serum samples after two and three immunizations with the Pfizer/BioNTech162b2 SARS-CoV-2 mRNA (Pfizer/BNT162b2) vaccine, convalescent serum samples from unvaccinated individuals infected by different variants, and clinical-stage therapeutic antibodies. We found that titers against the Omicron variant were low or undetectable after two immunizations and in many convalescent serum samples, regardless of the infecting variant. A booster vaccination increased titers more than 30-fold against Omicron to values comparable to those seen against the D614G variant after two immunizations. Neither age nor sex was associated with the differences in postvaccination antibody responses. We also evaluated 18 clinical-stage therapeutic antibody products and an antibody mimetic protein product obtained directly from the manufacturers. Five monoclonal antibodies, the antibody mimetic protein, three antibody cocktails, and two polyclonal antibody preparations retained measurable neutralization activity against Omicron with a varying degree of potency. Of these, only three retained potencies comparable to the D614G variant. Two therapeutic antibody cocktails in the tested panel that are authorized for emergency use in the United States did not neutralize Omicron. These findings underscore the potential benefit of mRNA vaccine boosters for protection against Omicron and the need for rapid development of antibody therapeutics that maintain potency against emerging variants.
Subject(s)
COVID-19 , SARS-CoV-2 , Antibodies, Neutralizing , Antibodies, Viral , BNT162 Vaccine , COVID-19/therapy , COVID-19 Vaccines , Humans , Immunization, Passive , Vaccination , Vaccines, Synthetic , mRNA Vaccines , COVID-19 SerotherapyABSTRACT
The SARS-CoV-2 B.1.617 lineage variants, Kappa (B.1.617.1) and Delta (B.1.617.2, AY) emerged during the second wave of infections in India, but the Delta variants have become dominant worldwide and continue to evolve. Here, we compared B.1.617 variants for neutralization resistance by convalescent sera, mRNA vaccine-elicited sera, and therapeutic neutralizing antibodies using a pseudovirus neutralization assay. B.1.617.1, B.1.617.2, and AY.1 pseudoviruses showed a modest 1.5- to 4.4-fold reduction in neutralization by convalescent sera and vaccine-elicited sera. In comparison, similar modest reductions were also observed for C.37, P.1, R.1, and B.1.526 pseudoviruses, but 7- and 16-fold reductions for vaccine-elicited and convalescent sera, respectively, were seen for B.1.351 pseudoviruses. Among twenty-three therapeutic antibodies tested, four antibodies showed either complete or partial loss of neutralization against B.1.617.2 pseudoviruses and six antibodies showed either complete or partial loss of neutralization against B.1.617.1 and AY.1 pseudoviruses. Our results indicate that the current mRNA-based vaccines will likely remain effective in protecting against B.1.617 variants. Finally, the P681R substitution confers efficient cleavage of B.1.617 variants' spike proteins and the spike of Delta variants exhibited greater sensitivity to soluble ACE2 neutralization, as well as fusogenic activity, which may contribute to enhanced spread of Delta variants.
Subject(s)
Antibodies, Neutralizing/immunology , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/metabolism , Angiotensin-Converting Enzyme 2/metabolism , Antibodies, Viral/immunology , Antigenic Variation , COVID-19/immunology , COVID-19/virology , COVID-19 Vaccines/immunology , Cell Fusion , Furin/metabolism , Humans , Protein Binding , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/immunologyABSTRACT
Many public health responses and modeled scenarios for COVID-19 outbreaks caused by SARS-CoV-2 assume that infection results in an immune response that protects individuals from future infections or illness for some amount of time. The presence or absence of protective immunity due to infection or vaccination (when available) will affect future transmission and illness severity. Here, we review the scientific literature on antibody immunity to coronaviruses, including SARS-CoV-2 as well as the related SARS-CoV, MERS-CoV and endemic human coronaviruses (HCoVs). We reviewed 2,452 abstracts and identified 491 manuscripts relevant to 5 areas of focus: 1) antibody kinetics, 2) correlates of protection, 3) immunopathogenesis, 4) antigenic diversity and cross-reactivity, and 5) population seroprevalence. While further studies of SARS-CoV-2 are necessary to determine immune responses, evidence from other coronaviruses can provide clues and guide future research.