Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 34
Filter
1.
Pathogens ; 11(12):1531, 2022.
Article in English | MDPI | ID: covidwho-2163545

ABSTRACT

Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), a new coronavirus causing Coronavirus Disease 2019 (COVID-19), is a major topic of global human health concern. The Delta and Omicron variants have caused alarming responses worldwide due to their high transmission rates and a number of mutations. During a one-year follow-up (from June 2020 to June 2021), we included 114 patients with SARS-CoV-2 infection to study the long-term dynamics and the correlative factors of neutralizing antibodies (NAbs) in convalescent patients. The blood samples were collected at two detection time points (at 6 and 12 months after discharge). We evaluated the NAbs response of discharged patients by performing a micro-neutralization assay using a SARS-CoV-2 wild type. In addition, a total of 62 serum samples from discharged COVID-19 patients with Alpha, Beta, Delta, and Omicron variants of infection were enrolled to perform cross-neutralization tests using the original SARS-CoV-2 strain and VOCs variants (including Alpha, Beta, Gamma, Delta, and Omicron variants) and to assess the ability of NAbs against the SARS-CoV-2 variants. NAbs seroconversion occurred in 91.46% of patients (n = 82) in the first timepoint and in 89.29% of patients (n = 84) in the second detection point, and three kinds of NAbs kinetics curves were perceived. The NAbs levels in young patients had higher values than those in elder patients. The kinetics of disease duration was accompanied by an opposite trend in NAbs levels. Despite a declining NAbs response, NAbs activity was still detectable in a substantial proportion of recovered patients one year after discharge. Compared to the wild strain, the Omicron strain could lead to a 23.44-, 3.42-, 8.03-, and 2.57-fold reduction in neutralization capacity in 'SAlpha';, 'SBeta';, 'SDelta';, and 'SOmicron';, respectively, and the NAbs levels against the Omicron strain were significantly lower than those of the Beta and Delta variants. Remarkably, the NAbs activity of convalescent serum with Omicron strain infection was most obviously detectable against six SARS-CoV-2 strains in our study. The role of the vaccination history in NAbs levels further confirmed the previous study that reported vaccine-induced NAbs as the convincing protection mechanism against SARS-CoV-2. In conclusion, our findings highlighted the dynamics of the long-term immune responses after the disappearance of symptoms and revealed that NAbs levels varied among all types of convalescent patients with COVID-19 and that NAbs remained detectable for one year, which is reassuring in terms of protection against reinfection. Moreover, a moderate correlation between the duration of disease and Nabs titers was observed, whereas age was negatively correlated with Nabs titers. On the other hand, compared with other VOCs, the Omicron variant was able to escape the defenses of the immune system more significantly, and the convalescent serum infected with the Omicron variant played a critical part in protection against different SARS-CoV-2 variants. Recovery serum from individuals vaccinated with inactivated vaccine preceding infection with the Omicron strain had a high efficacy against the original strain and the VOCs variants, whereas the convalescent serum of persons vaccinated by inactivated vaccine prior to infection with the Delta variant was only potent against the wild-type strain.

3.
RSC Medicinal Chemistry ; 2022.
Article in English | Web of Science | ID: covidwho-2096848

ABSTRACT

Toll-like receptor 4 (TLR4) is a reliable target for the development of vaccine adjuvants. To identify novel TLR4 ligands with improved immunological properties for use as adjuvants for a RBD-hFc based SARS-CoV-2 vaccine, herein, natural E. coli monophosphoryl lipid A (MPLA) and nine of its derivatives were designed and synthesized. Immunological evaluation showed that compounds 1, 3, 5 and 7 exhibited comparative or better adjuvant activity than clinically used Al adjuvants, and are expected to be a promising platform for the development of new adjuvants used for a RBD-hFc based SARS-CoV-2 vaccine. Preliminary structure-activity relationship analysis of the MPLA derivatives showed that the replacement of the functional groups at the C-1, C-4' or C-6' position of E. coli MPLA has an effect on its biological activity. In addition, we found that the combination of MPLA and Al was feasible for immunotherapy and could further enhance immune responses, providing a new direction toward the immunological enhancement of RBD-hFc based SARS-CoV-2 vaccines.

4.
Vaccines (Basel) ; 10(9)2022 Sep 08.
Article in English | MEDLINE | ID: covidwho-2010368

ABSTRACT

The coronavirus disease-19 (COVID-19) pandemic has been ongoing since December 2019, with more than 6.3 million deaths reported globally as of August 2022. Despite the success of several SARS-CoV-2 vaccines, the rise in variants, some of which are resistant to the effects of vaccination, highlights the need for a so-called pan-coronavirus (universal) vaccine. Here, we performed an immunogenicity comparison of prototype vaccines containing spike protein receptor-binding domain (RBD) residues 319-541, or spike protein regions S1, S2 and S fused to a histidine-tagged or human IgG1 Fc (hFC) fragment with either a longer (six residues) or shorter (three residues) linker. While all recombinant protein vaccines developed were effective in eliciting humoral immunity, the RBD-hFc vaccine was able to generate a potent neutralizing antibody response as well as a cellular immune response. We then compared the effects of recombinant protein length and linker size on immunogenicity in vivo. We found that a longer recombinant RBD protein (residues 319-583; RBD-Plus-hFc) containing a small alanine linker (AAA) was able to trigger long-lasting, high-titer neutralizing antibodies in mice. Finally, we evaluated cross-neutralization of wild-type and mutant RBD-Plus-hFc vaccines against wild-type, Alpha, Beta, Delta and Omicron SARS-CoV-2 variants. Significantly, at the same antigen dose, wild-type RBD-Plus-hFc immune sera induced broadly neutralizing antibodies against wild-type, Alpha, Beta, Delta and Omicron variants. Taken together, our findings provide valuable information for the continued development of recombinant protein-based SARS-CoV-2 vaccines and a basic foundation for booster vaccinations to avoid reinfection with SARS-CoV-2 variants.

5.
Chinese Journal of Virology ; 36(2):155-159, 2020.
Article in Chinese | CAB Abstracts | ID: covidwho-1975405

ABSTRACT

In January 2020, Guangdong Province, China imported several suspected cases with SARS-CoV-2 from Wuhan City, Hubei Province. China, which were detected as SARS-CoV-2 positive in laboratory. To further understand the SARS-CoV-2 virulence, as well as drug development and epidemic prevention and control needs, we established a SARS-CoV-2 isolation procedure. Vero-E6 cells were infected with the positive bronchoalveolar-lavage sample. The cells were monitored daily for cytopathic effects using light microscopy. The presence of viral nucleic acid in the supernatant was detected by RT-PCR. RNA extracted from culture supernatants were used as a template to clone and sequence the genome. We used Illumina sequencing to characterize the virus genome and results showed that the isolated virus was SARS-CoV-2.

6.
Eur Respir J ; 59(2)2022 02.
Article in English | MEDLINE | ID: covidwho-1869041

ABSTRACT

The current pandemic of coronavirus disease 2019 (COVID-19) has affected >160 million individuals to date, and has caused millions of deaths worldwide, at least in part due to the unclarified pathophysiology of this disease. Identifying the underlying molecular mechanisms of COVID-19 is critical to overcome this pandemic. Metabolites mirror the disease progression of an individual and can provide extensive insights into their pathophysiological significance at each stage of disease. We provide a comprehensive view of metabolic characterisation of sera from COVID-19 patients at all stages using untargeted and targeted metabolomic analysis. As compared with the healthy controls, we observed different alteration patterns of circulating metabolites from the mild, severe and recovery stages, in both the discovery cohort and the validation cohort, which suggests that metabolic reprogramming of glucose metabolism and the urea cycle are potential pathological mechanisms for COVID-19 progression. Our findings suggest that targeting glucose metabolism and the urea cycle may be a viable approach to fight COVID-19 at various stages along the disease course.


Subject(s)
COVID-19 , Cohort Studies , Humans , Metabolomics , Pandemics , SARS-CoV-2
7.
Emerg Microbes Infect ; 11(1): 1500-1507, 2022 Dec.
Article in English | MEDLINE | ID: covidwho-1864931

ABSTRACT

In vaccinees who were infected with SARS-CoV in 2003, we observed greater antibody responses against spike and nucleoprotein of both SARS-CoV-2 and SARS-CoV after a single dosage of inactivated SARS-CoV-2 vaccine. After receiving the second vaccination, antibodies against RBD of SARS-CoV-2 Wuhan, Beta, Delta, and recently emerged Omicron are significantly higher in SARS-CoV experienced vaccinees than in SARS-CoV naïve vaccinees. Neutralizing activities measured by authentic viruses and pseudoviruses of SARS-CoV, SARS-CoV-2 Wuhan, Beta, and Delta are greater in SARS-CoV experienced vaccinees. In contrast, only weak neutralizing activities against SARS-CoV-2 and variants were detected in SARS-CoV naïve vaccinees. By 6 months after the second vaccination, neutralizing activities were maintained at a relatively higher level in SARS-CoV experienced vaccinees but were undetectable in SARS-CoV naïve vaccinees. These findings suggested a great possibility of developing a universal vaccine by heterologous vaccination using spike antigens from different SARS-related coronaviruses.


Subject(s)
COVID-19 , SARS-CoV-2 , Antibodies, Neutralizing , Antibodies, Viral , Antibody Formation , COVID-19/prevention & control , COVID-19 Vaccines , Humans , Spike Glycoprotein, Coronavirus/genetics , Vaccination
8.
Biosaf Health ; 4(3): 205-208, 2022 Jun.
Article in English | MEDLINE | ID: covidwho-1783215

ABSTRACT

The immune responses and the function of immune cells among asymptomatic severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection cases, especially in immuno-compromised individuals, remain largely unknown. Here we present a case of asymptomatic SARS-CoV-2 infection that lasted for at least 67 days. The patient has administrated Thymalfasin as 1.6 mg per dose every other day from Day 45 to 70, plus 200 mg per dose Arbidol antiviral therapy three doses per day from Day 48 to 57. Throughout the infection, no anti-SARS-CoV-2 specific IgM or IgG antibodies were detected. Instead, the patient showed either a low percentage or an absolute number of non-classical monocytes, dendritic cells (DCs), CD4+ T cells, and regulatory T cells (Tregs), which may account for the clinical feature and absence of antibody response. This case may shed new light on the outbreak management related to control/prevention, treatment, and vaccination of SARS-CoV-2 and other virus infections in immunocompromised individuals.

9.
Adv Sci (Weinh) ; 9(14): e2104333, 2022 05.
Article in English | MEDLINE | ID: covidwho-1782562

ABSTRACT

Coronavirus disease 2019 (COVID-19) remains a global public health threat. Hence, more effective and specific antivirals are urgently needed. Here, COVID-19 hyperimmune globulin (COVID-HIG), a passive immunotherapy, is prepared from the plasma of healthy donors vaccinated with BBIBP-CorV (Sinopharm COVID-19 vaccine). COVID-HIG shows high-affinity binding to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike (S) protein, the receptor-binding domain (RBD), the N-terminal domain of the S protein, and the nucleocapsid protein; and blocks RBD binding to human angiotensin-converting enzyme 2 (hACE2). Pseudotyped and authentic virus-based assays show that COVID-HIG displays broad-spectrum neutralization effects on a wide variety of SARS-CoV-2 variants, including D614G, Alpha (B.1.1.7), Beta (B.1.351), Gamma (P.1), Kappa (B.1.617.1), Delta (B.1.617.2), and Omicron (B.1.1.529) in vitro. However, a significant reduction in the neutralization titer is detected against Beta, Delta, and Omicron variants. Additionally, assessments of the prophylactic and treatment efficacy of COVID-HIG in an Adv5-hACE2-transduced IFNAR-/- mouse model of SARS-CoV-2 infection show significantly reduced weight loss, lung viral loads, and lung pathological injury. Moreover, COVID-HIG exhibits neutralization potency similar to that of anti-SARS-CoV-2 hyperimmune globulin from pooled convalescent plasma. Overall, the results demonstrate the potential of COVID-HIG against SARS-CoV-2 infection and provide reference for subsequent clinical trials.


Subject(s)
COVID-19 Vaccines , COVID-19 , Globulins , Animals , COVID-19/therapy , Globulins/therapeutic use , Humans , Immunization, Passive , Mice , SARS-CoV-2 , Spike Glycoprotein, Coronavirus
10.
Emerg Microbes Infect ; 11(1): 1058-1071, 2022 Dec.
Article in English | MEDLINE | ID: covidwho-1752040

ABSTRACT

Safe, efficacious, and deployable vaccines are urgently needed to control COVID-19 in the large-scale vaccination campaigns. We report here the preclinical studies of an approved protein subunit vaccine against COVID-19, ZF2001, which contains tandem-repeat dimeric receptor-binding domain (RBD) protein with alum-based adjuvant. We assessed vaccine immunogenicity and efficacy in both mice and non-human primates (NHPs). ZF2001 induced high levels of RBD-binding and SARS-CoV-2 neutralizing antibody in both mice and non-human primates, and elicited balanced TH1/TH2 cellular responses in NHPs. Two doses of ZF2001 protected Ad-hACE2-transduced mice against SARS-CoV-2 infection, as detected by reduced viral RNA and relieved lung injuries. In NHPs, vaccination of either 25 µg or 50 µg ZF2001 prevented infection with SARS-CoV-2 in lung, trachea, and bronchi, with milder lung lesions. No evidence of disease enhancement was observed in both animal models. ZF2001 has been approved for emergency use in China, Uzbekistan, Indonesia, and Columbia. The high safety, immunogenicity, and protection efficacy in both mice and NHPs found in this preclinical study was consistent with the results in human clinical trials.


Subject(s)
COVID-19 Vaccines , COVID-19 , Animals , Antibodies, Neutralizing , Antibodies, Viral , COVID-19/prevention & control , Carrier Proteins , Humans , Immunogenicity, Vaccine , Mice , Mice, Inbred BALB C , Primates , SARS-CoV-2 , Spike Glycoprotein, Coronavirus/genetics , Vaccines, Subunit
11.
Adv Sci (Weinh) ; 9(11): e2105378, 2022 04.
Article in English | MEDLINE | ID: covidwho-1680239

ABSTRACT

The SARS-CoV-2 Delta (B.1.617.2) strain is a variant of concern (VOC) that has become the dominant strain worldwide in 2021. Its transmission capacity is approximately twice that of the original strain, with a shorter incubation period and higher viral load during infection. Importantly, the breakthrough infections of the Delta variant have continued to emerge in the first-generation vaccine recipients. There is thus an urgent need to develop a novel vaccine with SARS-CoV-2 variants as the major target. Here, receptor binding domain (RBD)-conjugated nanoparticle vaccines targeting the Delta variant, as well as the early and Beta/Gamma strains, are developed. Under both a single-dose and a prime-boost strategy, these RBD-conjugated nanoparticle vaccines induce the abundant neutralizing antibodies (NAbs) and significantly protect hACE2 mice from infection by the authentic SARS-CoV-2 Delta strain, as well as the early and Beta strains. Furthermore, the elicitation of the robust production of broader cross-protective NAbs against almost all the notable SARS-CoV-2 variants including the Omicron variant in rhesus macaques by the third re-boost with trivalent vaccines is found. These results suggest that RBD-based monovalent or multivalent nanoparticle vaccines provide a promising second-generation vaccine strategy for SARS-CoV-2 variants.


Subject(s)
COVID-19 , Nanoparticles , Animals , Broadly Neutralizing Antibodies , COVID-19/prevention & control , Macaca mulatta/metabolism , Mice , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , Vaccines, Conjugate
12.
Front Cell Infect Microbiol ; 11: 791660, 2021.
Article in English | MEDLINE | ID: covidwho-1599571

ABSTRACT

The appearance and magnitude of the immune response and the related factors correlated with SARS-CoV-2 vaccination need to be defined. Here, we enrolled a prospective cohort of 52 participants who received two doses of inactivated vaccines (BBIBP-CorV). Their serial plasma samples (n = 260) over 2 months were collected at five timepoints. We measured antibody responses (NAb, S-IgG and S-IgM) and routine blood parameter. NAb seroconversion occurred in 90.7% of vaccinated individuals and four typical NAb kinetic curves were observed. All of the participants who seroconverted after the first dose were females and had relatively high prevaccine estradiol levels. Moreover, those without seroconversion tended to have lower lymphocyte counts and higher serum SAA levels than those who experienced seroconversion. The NAb titers in young vaccine recipients had a significantly higher peak than those in elderly recipients. S-IgG and S-IgM dynamics were accompanied by similar trends in NAb. Here, we gained insight into the dynamic changes in NAbs and preliminarily explored the prevaccine blood parameters related to the kinetic subclasses, providing a reference for vaccination strategies.


Subject(s)
COVID-19 Vaccines , COVID-19 , Aged , Antibodies, Neutralizing , Antibodies, Viral , Antibody Formation , Female , Healthy Volunteers , Humans , Prospective Studies , SARS-CoV-2 , Vaccines, Inactivated
13.
Innovation (N Y) ; 3(1): 100181, 2022 Jan 25.
Article in English | MEDLINE | ID: covidwho-1595417

ABSTRACT

Most COVID-19 convalescents can build effective anti-SARS-CoV-2 humoral immunity, but it remains unclear how long it can maintain and how efficiently it can prevent the reinfection of the emerging SARS-CoV-2 variants. Here, we tested the sera from 248 COVID-19 convalescents around 1 year post-infection in Wuhan, the earliest known epicenter. SARS-CoV-2 immunoglobulin G (IgG) was well maintained in most patients and potently neutralizes the infection of the original strain and the B.1.1.7 variant. However, varying degrees of immune escape was observed on the other tested variants in a patient-specific manner, with individuals showing remarkably broad neutralization potency. The immune escape can be largely attributed to several critical spike mutations. These results suggest that SARS-CoV-2 can elicit long-lasting immunity but this is escaped by the emerging variants.

14.
Cell Rep ; 38(3): 110256, 2022 01 18.
Article in English | MEDLINE | ID: covidwho-1588136

ABSTRACT

Inoculation against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is ongoing worldwide. However, the emergence of SARS-CoV-2 variants could cause immune evasion. We developed a bivalent nanoparticle vaccine that displays the receptor binding domains (RBDs) of the D614G and B.1.351 strains. With a prime-boost or a single-dose strategy, this vaccine elicits a robust neutralizing antibody and full protection against infection with the authentic D614G or B.1.351 strain in human angiotensin-converting enzyme 2 transgene mice. Interestingly, 8 months after inoculation with the D614G-specific vaccine, a new boost with this bivalent vaccine potently elicits cross-neutralizing antibodies for SARS-CoV-2 variants in rhesus macaques. We suggest that the D614G/B.1.351 bivalent vaccine could be used as an initial single dose or a sequential enforcement dose to prevent infection with SARS-CoV-2 and its variants.


Subject(s)
COVID-19/prevention & control , Cross Protection , SARS-CoV-2/immunology , Vaccines, Combined/therapeutic use , Animals , CHO Cells , COVID-19 Vaccines/chemical synthesis , COVID-19 Vaccines/immunology , COVID-19 Vaccines/therapeutic use , Chlorocebus aethiops , Cricetulus , Cross Protection/immunology , Female , HEK293 Cells , Humans , Macaca mulatta , Male , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Mice, Transgenic , Nanoparticles , Vaccination/methods , Vaccines, Combined/chemical synthesis , Vaccines, Combined/immunology , Vero Cells
15.
Signal Transduct Target Ther ; 6(1): 420, 2021 12 14.
Article in English | MEDLINE | ID: covidwho-1585885

ABSTRACT

COVID-19 is identified as a zoonotic disease caused by SARS-CoV-2, which also can cross-transmit to many animals but not mice. Genetic modifications of SARS-CoV-2 or mice enable the mice susceptible to viral infection. Although neither is the natural situation, they are currently utilized to establish mouse infection models. Here we report a direct contact transmission of SARS-CoV-2 variant B.1.351 in wild-type mice. The SARS-CoV-2 (B.1.351) replicated efficiently and induced significant pathological changes in lungs and tracheas, accompanied by elevated proinflammatory cytokines in the lungs and sera. Mechanistically, the receptor-binding domain (RBD) of SARS-CoV-2 (B.1.351) spike protein turned to a high binding affinity to mouse angiotensin-converting enzyme 2 (mACE2), allowing the mice highly susceptible to SARS-CoV-2 (B.1.351) infection. Our work suggests that SARS-CoV-2 (B.1.351) expands the host range and therefore increases its transmission route without adapted mutation. As the wild house mice live with human populations quite closely, this possible transmission route could be potentially risky. In addition, because SARS-CoV-2 (B.1.351) is one of the major epidemic strains and the mACE2 in laboratory-used mice is naturally expressed and regulated, the SARS-CoV-2 (B.1.351)/mice could be a much convenient animal model system to study COVID-19 pathogenesis and evaluate antiviral inhibitors and vaccines.


Subject(s)
Angiotensin-Converting Enzyme 2/genetics , COVID-19/transmission , Host-Pathogen Interactions/genetics , Receptors, Virus/genetics , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/genetics , Angiotensin-Converting Enzyme 2/immunology , Animals , COVID-19/immunology , COVID-19/virology , Cytokines/genetics , Cytokines/immunology , Disease Models, Animal , Gene Expression , HEK293 Cells , Host-Pathogen Interactions/immunology , Humans , Lung/pathology , Lung/virology , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Protein Binding , Protein Domains , Receptors, Virus/immunology , SARS-CoV-2/classification , SARS-CoV-2/genetics , SARS-CoV-2/pathogenicity , Spike Glycoprotein, Coronavirus/immunology , Virus Replication
16.
Biosens Bioelectron ; 198: 113857, 2022 Feb 15.
Article in English | MEDLINE | ID: covidwho-1549656

ABSTRACT

The increasing prevalence of SARS-CoV-2 variants with spike mutations has raised concerns owing to higher transmission rates, disease severity, and escape from neutralizing antibodies. Rapid and accurate detection of SARS-CoV-2 variants provides crucial information concerning the outbreaks of SARS-CoV-2 variants and possible lines of transmission. This information is vital for infection prevention and control. We used a Cas12a-based RT-PCR combined with CRISPR on-site rapid detection system (RT-CORDS) platform to detect the key mutations in SARS-CoV-2 variants, such as 69/70 deletion, N501Y, and D614G. We used type-specific CRISPR RNAs (crRNAs) to identify wild-type (crRNA-W) and mutant (crRNA-M) sequences of SARS-CoV-2. We successfully differentiated mutant variants from wild-type SARS-CoV-2 with a sensitivity of 10-17 M (approximately 6 copies/µL). The assay took just 10 min with the Cas12a/crRNA reaction after a simple RT-PCR using a fluorescence reporting system. In addition, a sensitivity of 10-16 M could be achieved when lateral flow strips were used as readouts. The accuracy of RT-CORDS for SARS-CoV-2 variant detection was 100% consistent with the sequencing data. In conclusion, using the RT-CORDS platform, we accurately, sensitively, specifically, and rapidly detected SARS-CoV-2 variants. This method may be used in clinical diagnosis.


Subject(s)
Biosensing Techniques , COVID-19 , CRISPR-Cas Systems , Humans , Mutation , SARS-CoV-2
19.
Nat Commun ; 12(1): 4984, 2021 08 17.
Article in English | MEDLINE | ID: covidwho-1361636

ABSTRACT

SARS-CoV-2 vaccination has been launched worldwide to build effective population-level immunity to curb the spread of this virus. The effectiveness and duration of protective immunity is a critical factor for public health. Here, we report the kinetics of the SARS-CoV-2 specific immune response in 204 individuals up to 1-year after recovery from COVID-19. RBD-IgG and full-length spike-IgG concentrations and serum neutralizing capacity decreases during the first 6-months, but is maintained stably up to 1-year after hospital discharge. Even individuals who had generated high IgG levels during early convalescent stages had IgG levels that had decreased to a similar level one year later. Notably, the RBD-IgG level positively correlates with serum neutralizing capacity, suggesting the representative role of RBD-IgG in predicting serum protection. Moreover, viral-specific cellular immune protection, including spike and nucleoprotein specific, persisted between 6 months and 12 months. Altogether, our study supports the persistence of viral-specific protective immunity over 1 year.


Subject(s)
COVID-19/immunology , SARS-CoV-2/immunology , Antibodies, Neutralizing/immunology , Antibodies, Viral/blood , Antibodies, Viral/immunology , COVID-19/blood , Humans , Immunity, Cellular/immunology , Immunity, Humoral/immunology , Immunoglobulin G/blood , Immunoglobulin G/immunology , Spike Glycoprotein, Coronavirus/immunology
20.
Cell Rep ; 34(4): 108666, 2021 01 26.
Article in English | MEDLINE | ID: covidwho-1064915

ABSTRACT

Although vaccines against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are under development, the antigen epitopes on the virus and their immunogenicity are poorly understood. Here, we simulate the 3D structures and predict the B cell epitopes on the spike (S), envelope (E), membrane (M), and nucleocapsid (N) proteins of SARS-CoV-2 using structure-based approaches and validate epitope immunogenicity by immunizing mice. Almost all 33 predicted epitopes effectively induce antibody production, six of these are immunodominant epitopes in individuals, and 23 are conserved within SARS-CoV-2, SARS-CoV, and bat coronavirus RaTG13. We find that the immunodominant epitopes of individuals with domestic (China) SARS-CoV-2 are different from those of individuals with imported (Europe) SARS-CoV-2, which may be caused by mutations on the S (G614D) and N proteins. Importantly, we find several epitopes on the S protein that elicit neutralizing antibodies against D614 and G614 SARS-CoV-2, which can contribute to vaccine design against coronaviruses.


Subject(s)
Coronavirus Nucleocapsid Proteins/immunology , Epitopes, B-Lymphocyte/immunology , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/immunology , Viral Matrix Proteins/immunology , Viroporin Proteins/immunology , Adolescent , Adult , Aged , Animals , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , Antigens, Viral/immunology , COVID-19/immunology , COVID-19/therapy , COVID-19 Vaccines/immunology , Child , Epitopes, B-Lymphocyte/metabolism , Female , Humans , Male , Mice , Mice, Inbred BALB C , Middle Aged , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL