Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
1.
Immunity ; 55(7): 1299-1315.e4, 2022 07 12.
Article in English | MEDLINE | ID: covidwho-1972132

ABSTRACT

As the establishment of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-specific T cell memory in children remains largely unexplored, we recruited convalescent COVID-19 children and adults to define their circulating memory SARS-CoV-2-specific CD4+ and CD8+ T cells prior to vaccination. We analyzed epitope-specific T cells directly ex vivo using seven HLA class I and class II tetramers presenting SARS-CoV-2 epitopes, together with Spike-specific B cells. Unvaccinated children who seroconverted had comparable Spike-specific but lower ORF1a- and N-specific memory T cell responses compared with adults. This agreed with our TCR sequencing data showing reduced clonal expansion in children. A strong stem cell memory phenotype and common T cell receptor motifs were detected within tetramer-specific T cells in seroconverted children. Conversely, children who did not seroconvert had tetramer-specific T cells of predominantly naive phenotypes and diverse TCRαß repertoires. Our study demonstrates the generation of SARS-CoV-2-specific T cell memory with common TCRαß motifs in unvaccinated seroconverted children after their first virus encounter.


Subject(s)
COVID-19 , SARS-CoV-2 , CD4-Positive T-Lymphocytes , CD8-Positive T-Lymphocytes , Epitopes, T-Lymphocyte , Humans , Immunologic Memory , Receptors, Antigen, T-Cell , Receptors, Antigen, T-Cell, alpha-beta/genetics , Spike Glycoprotein, Coronavirus
3.
Nat Commun ; 13(1): 2774, 2022 05 19.
Article in English | MEDLINE | ID: covidwho-1900484

ABSTRACT

Respiratory tract infection with SARS-CoV-2 results in varying immunopathology underlying COVID-19. We examine cellular, humoral and cytokine responses covering 382 immune components in longitudinal blood and respiratory samples from hospitalized COVID-19 patients. SARS-CoV-2-specific IgM, IgG, IgA are detected in respiratory tract and blood, however, receptor-binding domain (RBD)-specific IgM and IgG seroconversion is enhanced in respiratory specimens. SARS-CoV-2 neutralization activity in respiratory samples correlates with RBD-specific IgM and IgG levels. Cytokines/chemokines vary between respiratory samples and plasma, indicating that inflammation should be assessed in respiratory specimens to understand immunopathology. IFN-α2 and IL-12p70 in endotracheal aspirate and neutralization in sputum negatively correlate with duration of hospital stay. Diverse immune subsets are detected in respiratory samples, dominated by neutrophils. Importantly, dexamethasone treatment does not affect humoral responses in blood of COVID-19 patients. Our study unveils differential immune responses between respiratory samples and blood, and shows how drug therapy affects immune responses during COVID-19.


Subject(s)
COVID-19 , Antibodies, Viral , Humans , Immunity , Immunoglobulin G , Immunoglobulin M , Respiratory System , SARS-CoV-2 , Severity of Illness Index , Spike Glycoprotein, Coronavirus
4.
EuropePMC; 2020.
Preprint in English | EuropePMC | ID: ppcovidwho-317943

ABSTRACT

T-cell responses to SARS-CoV-2-derived peptide pools have been documented, however it remains largely unclear whether prominent SARS-CoV-2-specific T cell populations originate from naïve or pre-existing memory sets. As HLA-B*07:02-restricted N105-113 epitope (B7/N105) is the most dominant SARS-CoV-2 CD8+ T-cell specificity to date, we dissected CD8+ T-cell responses directed at this epitope by direct ex vivo analyses in peripheral blood mononuclear cells (PBMCs) from acute and convalescent COVID-19 patients, and pre-pandemic PBMCs, tonsils, lungs and spleens. Using peptide-HLA tetramers, immunodominant B7/N105+CD8+ T-cells were detected at a high frequency (∼2.18x10-4) in COVID-19 patients, comparable to the well-established influenza-specific A2/M158+CD8+ T-cell population. Remarkably, frequencies of B7/N105+CD8+ T-cells were also readily detectable in pre-pandemic PBMCs and tonsils (at 6.55x10-5 and 2.76x10-4, respectively), although they mainly displayed a naïve phenotype, indicating a lack of previous cross-reactive exposures. Ex vivo TCRαβ analyses revealed that a diverse TCRαβ repertoire and promiscuity in αβ TCR pairing underlie such high naïve precursor frequencies of B7/N105+CD8+ T-cells. Overall, our study demonstrates that high precursor frequency and plasticity of TCRα-TCRβ pairing underpin immunodominance of SARS-CoV-2-specific B7/N105+CD8+ T-cell responses and advocates for vaccine strategies which include the nucleocapsid protein to elicit immunodominant CD8+ T-cell responses in HLA-B*07:02 individuals.Funding: This work was supported by theClifford Craig Foundation to KLF and KK, NHMRC Leadership Investigator Grant to KK (1173871), NHMRC Program Grant to DLD (#1132975), Research Grants Council of theHong Kong Special Administrative Region, China (#T11-712/19-N) to KK, the Victorian Government (SJK, AKW), MRFF award (#2002073) to SJK and AKW, MRFFAward (#1202445) to KK, NHMRC program grant 1149990 (SJK) and NHMRC project grant 1162760 (AKW). AKW is supported by Emerging Leadership 1 Investigator Grant (#1173433), JAJ by an NHMRC Early Career Fellowship (ECF) (#1123673), KK by NHMRC SeniorResearch Fellowship (1102792), DLD by a NHMRC Principal Research Fellowship(#1137285) and SJK by NHMRC Senior Principal Research Fellowship (#1136322). CES has received funding from the European Union’s Horizon 2020 research and innovation program under the Marie Skłodowska-Curie grant agreement (#792532). JR is supported by an ARC Laureate fellowship. JRH and WZ are supported by the Melbourne Research Scholarship from The University of Melbourne. LH is supported by the Melbourne International Research Scholarship (MIRS) and the Melbourne International Fee Remission Scholarship (MIFRS) from The University of Melbourne.Ethical Approval: Experiments conformed to the Declaration of Helsinki Principles and theAustralian National Health and Medical Research Council Code of Practice. Written informed consents were obtained from all blood donors prior to the study. Lung and spleen tissues were obtained from deceased organ donors after written informed consents from the next of kin.Written informed consents were obtained from participants’ parental or guardians for underage tonsil tissue donors. The study was approved by the Alfred Hospital (#280/14), Austin Health (HREC/63201/Austin-2020);the University of Melbourne (#2057366.1, #2056901.1,#2056689, #2056761, #1442952, #1955465, and #1443389), the Australian Red CrossLifeblood (ID 2015#8), the Tasmanian Health and Medical (ID H0017479) and the James Cook University (H7886) Human Research Ethics Committees.

5.
EuropePMC; 2021.
Preprint in English | EuropePMC | ID: ppcovidwho-313938

ABSTRACT

Although pregnancy poses a greater risk for severe COVID-19, the underlying immunological changes associated with SARS-CoV-2 infection during pregnancy are poorly understood. We defined immune responses to SARS-CoV-2 in pregnant and non-pregnant women during acute and convalescent COVID-19 up to 258 days post symptom onset, quantifying 217 immunological parameters. Additionally, matched maternal and cord blood were collected from COVID-19 convalescent pregnancies. Although serological responses to SARS-CoV-2 were similar in pregnant and non-pregnant women, cellular immune analyses revealed marked differences in key NK cell and unconventional T cell responses during COVID-19 in pregnant women. While NK, γδ T cells and MAIT cells displayed pre-activated phenotypes in healthy pregnant women when compared to non-pregnant age-matched women, activation profiles of these pre-activated NK and unconventional T cells remained unchanged at acute and convalescent COVID-19 in pregnancy. Conversely, activation dynamics of NK and unconventional T cells were prototypical in non-pregnant women in COVID-19. In contrast, activation of αβ CD4 + and CD8 + T cells, T follicular helper cells and antibody-secreting cells was similar in pregnant and non-pregnant women with COVID-19. Elevated levels of IL-1β, IFN-γ, IL-8, IL-18 and IL-33 were also found in pregnant women in their healthy state, and these cytokine levels remained elevated during acute and convalescent COVID-19. Collectively, our study provides the first comprehensive map of longitudinal immunological responses to SARS-CoV-2 infection in pregnant women, providing insights into patient management and education during COVID-19 pregnancy.

6.
EuropePMC; 2021.
Preprint in English | EuropePMC | ID: ppcovidwho-310271

ABSTRACT

The host response to SARS-CoV-2 infection provide insights into both viral pathogenesis and patient management. The host-encoded microRNA (miRNA) response to SARS-CoV-2 infection, however, remains poorly defined. Here we profiled circulating miRNAs from ten COVID-19 patients sampled longitudinally and ten age and gender matched healthy donors. We observed 55 miRNAs that were altered in COVID-19 patients during early-stage disease, with the inflammatory miR-31-5p the most strongly upregulated. Supervised machine learning analysis revealed that a three-miRNA signature (miR-423-5p, miR-23a-3p and miR-195-5p) independently classified COVID-19 cases with an accuracy of 99.9%. In a ferret COVID-19 model, the three-miRNA signature again detected SARS-CoV-2 infection with 99.7% accuracy, and distinguished SARS-CoV-2 infection from influenza A (H1N1) infection and healthy controls with 95% accuracy. Distinct miRNA profiles were also observed in COVID-19 patients requiring oxygenation. This study demonstrates that SARS-CoV-2 infection induces a robust host miRNA response that could improve COVID-19 detection and patient management

7.
EBioMedicine ; 74: 103729, 2021 Dec.
Article in English | MEDLINE | ID: covidwho-1555409

ABSTRACT

BACKGROUND: As vaccines against SARS-CoV-2 are now being rolled out, a better understanding of immunity to the virus, whether from infection, or passive or active immunisation, and the durability of this protection is required. This will benefit from the ability to measure antibody-based protection to SARS-CoV-2, ideally with rapid turnaround and without the need for laboratory-based testing. METHODS: We have developed a lateral flow POC test that can measure levels of RBD-ACE2 neutralising antibody (NAb) from whole blood, with a result that can be determined by eye or quantitatively on a small instrument. We compared our lateral flow test with the gold-standard microneutralisation assay, using samples from convalescent and vaccinated donors, as well as immunised macaques. FINDINGS: We show a high correlation between our lateral flow test with conventional neutralisation and that this test is applicable with animal samples. We also show that this assay is readily adaptable to test for protection to newly emerging SARS-CoV-2 variants, including the beta variant which revealed a marked reduction in NAb activity. Lastly, using a cohort of vaccinated humans, we demonstrate that our whole-blood test correlates closely with microneutralisation assay data (specificity 100% and sensitivity 96% at a microneutralisation cutoff of 1:40) and that fingerprick whole blood samples are sufficient for this test. INTERPRETATION: Taken together, the COVID-19 NAb-testTM device described here provides a rapid readout of NAb based protection to SARS-CoV-2 at the point of care. FUNDING: Support was received from the Victorian Operational Infrastructure Support Program and the Australian Government Department of Health. This work was supported by grants from the Department of Health and Human Services of the Victorian State Government; the ARC (CE140100011, CE140100036), the NHMRC (1113293, 2002317 and 1116530), and Medical Research Future Fund Awards (2005544, 2002073, 2002132). Individual researchers were supported by an NHMRC Emerging Leadership Level 1 Investigator Grants (1194036), NHMRC APPRISE Research Fellowship (1116530), NHMRC Leadership Investigator Grant (1173871), NHMRC Principal Research Fellowship (1137285), NHMRC Investigator Grants (1177174 and 1174555) and NHMRC Senior Principal Research Fellowships (1117766 and 1136322). Grateful support was also received from the A2 Milk Company and the Jack Ma Foundation.


Subject(s)
Antibodies, Neutralizing/blood , Antibodies, Viral/blood , COVID-19 Serological Testing/methods , COVID-19/immunology , Point-of-Care Systems , SARS-CoV-2/immunology , Animals , Australia , COVID-19 Vaccines/immunology , Humans , Macaca/immunology , Neutralization Tests , Vaccination
8.
EuropePMC; 2021.
Preprint in English | EuropePMC | ID: ppcovidwho-295859

ABSTRACT

Children are at lower risk of developing severe COVID-19, yet the underlying immune mechanisms are understudied. While children’s innate immunity can drive rapid resolution of SARS-CoV-2 infection, the establishment of SARS-CoV-2-specific T-cell and B-cell memory in COVID-19 children remains unexplored. We recruited a household cohort to understand SARS-CoV-2-specific CD4+ and CD8+ T-cell immune responses at one month after mild or asymptomatic SARS-CoV-2 infection in PCR-positive children in comparison to those found in their mothers. We analysed SARS-CoV-2-specific T-cell responses, together with B-cells, directly ex vivo using six HLA class-I tetramers and one class-II tetramer presenting SARS57 CoV-2 T-cell epitopes (A1/ORF1a1637, A2/S269, A3/N361, A24/S1208, B7/N105, B40/N322 and DPB4/S167), and Spike- and Receptor Binding Domain (RBD)-specific B-cell probes. Our in depth profiling of epitope-specific T-cell responses at quantitative, phenotypic and clonal levels found that only children who seroconverted had prominent memory T-cell and B-cell profiles. These children had a high magnitude of SARS-CoV-2-specific T-cells displaying memory phenotypes and prevalent T-cell receptor motifs, which were not observed in PCR+ RBD but IgG-negative children. This suggests that seroconversion but not PCR-positivity defines establishment of adaptive SARS-CoV-2-specific immunological memory in children. Our study suggests that COVID-19 vaccination of children could be a major advantage in terms of establishing T-cell and B-cell immunological memory, especially in children who did not seroconvert after SARS-CoV-2 infection.

9.
Open Forum Infect Dis ; 8(9): ofab359, 2021 Sep.
Article in English | MEDLINE | ID: covidwho-1405048

ABSTRACT

We describe severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-specific immune responses in a patient with lymphoma and recent programmed death 1 (PD-1) inhibitor therapy with late onset of severe coronavirus disease 2019 disease and prolonged SARS-CoV-2 replication, in comparison to age-matched and immunocompromised controls. High levels of HLA-DR+/CD38+ activation, interleukin 6, and interleukin 18 in the absence of B cells and PD-1 expression was observed. SARS-CoV-2-specific antibody responses were absent and SARS-CoV-2-specific T cells were minimally detected. This case highlights challenges in managing immunocompromised hosts who may fail to mount effective virus-specific immune responses.

10.
PLoS Pathog ; 17(7): e1009759, 2021 07.
Article in English | MEDLINE | ID: covidwho-1329138

ABSTRACT

The host response to SARS-CoV-2 infection provide insights into both viral pathogenesis and patient management. The host-encoded microRNA (miRNA) response to SARS-CoV-2 infection, however, remains poorly defined. Here we profiled circulating miRNAs from ten COVID-19 patients sampled longitudinally and ten age and gender matched healthy donors. We observed 55 miRNAs that were altered in COVID-19 patients during early-stage disease, with the inflammatory miR-31-5p the most strongly upregulated. Supervised machine learning analysis revealed that a three-miRNA signature (miR-423-5p, miR-23a-3p and miR-195-5p) independently classified COVID-19 cases with an accuracy of 99.9%. In a ferret COVID-19 model, the three-miRNA signature again detected SARS-CoV-2 infection with 99.7% accuracy, and distinguished SARS-CoV-2 infection from influenza A (H1N1) infection and healthy controls with 95% accuracy. Distinct miRNA profiles were also observed in COVID-19 patients requiring oxygenation. This study demonstrates that SARS-CoV-2 infection induces a robust host miRNA response that could improve COVID-19 detection and patient management.


Subject(s)
COVID-19 Testing/methods , COVID-19/diagnosis , COVID-19/genetics , MicroRNAs/genetics , SARS-CoV-2 , Adult , Aged , Animals , COVID-19/blood , Case-Control Studies , Diagnosis, Differential , Disease Models, Animal , Female , Ferrets , Gene Expression , Host Microbial Interactions/genetics , Humans , Influenza A Virus, H1N1 Subtype , Longitudinal Studies , Male , MicroRNAs/blood , Middle Aged , Orthomyxoviridae Infections/diagnosis , Orthomyxoviridae Infections/genetics , Pandemics , Supervised Machine Learning
12.
Immunity ; 54(5): 1066-1082.e5, 2021 05 11.
Article in English | MEDLINE | ID: covidwho-1216346

ABSTRACT

To better understand primary and recall T cell responses during coronavirus disease 2019 (COVID-19), it is important to examine unmanipulated severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-specific T cells. By using peptide-human leukocyte antigen (HLA) tetramers for direct ex vivo analysis, we characterized CD8+ T cells specific for SARS-CoV-2 epitopes in COVID-19 patients and unexposed individuals. Unlike CD8+ T cells directed toward subdominant epitopes (B7/N257, A2/S269, and A24/S1,208) CD8+ T cells specific for the immunodominant B7/N105 epitope were detected at high frequencies in pre-pandemic samples and at increased frequencies during acute COVID-19 and convalescence. SARS-CoV-2-specific CD8+ T cells in pre-pandemic samples from children, adults, and elderly individuals predominantly displayed a naive phenotype, indicating a lack of previous cross-reactive exposures. T cell receptor (TCR) analyses revealed diverse TCRαß repertoires and promiscuous αß-TCR pairing within B7/N105+CD8+ T cells. Our study demonstrates high naive precursor frequency and TCRαß diversity within immunodominant B7/N105-specific CD8+ T cells and provides insight into SARS-CoV-2-specific T cell origins and subsequent responses.


Subject(s)
CD8-Positive T-Lymphocytes/immunology , COVID-19/immunology , Coronavirus Nucleocapsid Proteins/immunology , Immunodominant Epitopes/immunology , Receptors, Antigen, T-Cell/immunology , SARS-CoV-2/immunology , Adult , Aged , Amino Acid Motifs , CD4-Positive T-Lymphocytes , Child , Convalescence , Coronavirus Nucleocapsid Proteins/chemistry , Epitopes, T-Lymphocyte/chemistry , Epitopes, T-Lymphocyte/immunology , Female , Humans , Immunodominant Epitopes/chemistry , Male , Middle Aged , Phenotype , Phosphoproteins/chemistry , Phosphoproteins/immunology , Receptors, Antigen, T-Cell/chemistry , Receptors, Antigen, T-Cell/genetics , Receptors, Antigen, T-Cell, alpha-beta/chemistry , Receptors, Antigen, T-Cell, alpha-beta/genetics , Receptors, Antigen, T-Cell, alpha-beta/immunology , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/immunology
13.
Cell Rep Med ; 2(3): 100208, 2021 03 16.
Article in English | MEDLINE | ID: covidwho-1065663

ABSTRACT

SARS-CoV-2 causes a spectrum of COVID-19 disease, the immunological basis of which remains ill defined. We analyzed 85 SARS-CoV-2-infected individuals at acute and/or convalescent time points, up to 102 days after symptom onset, quantifying 184 immunological parameters. Acute COVID-19 presented with high levels of IL-6, IL-18, and IL-10 and broad activation marked by the upregulation of CD38 on innate and adaptive lymphocytes and myeloid cells. Importantly, activated CXCR3+cTFH1 cells in acute COVID-19 significantly correlate with and predict antibody levels and their avidity at convalescence as well as acute neutralization activity. Strikingly, intensive care unit (ICU) patients with severe COVID-19 display higher levels of soluble IL-6, IL-6R, and IL-18, and hyperactivation of innate, adaptive, and myeloid compartments than patients with moderate disease. Our analyses provide a comprehensive map of longitudinal immunological responses in COVID-19 patients and integrate key cellular pathways of complex immune networks underpinning severe COVID-19, providing important insights into potential biomarkers and immunotherapies.


Subject(s)
Antibody Formation , COVID-19/immunology , Adaptive Immunity , Adult , Aged , Antibodies, Viral/blood , B-Lymphocytes/cytology , B-Lymphocytes/metabolism , COVID-19/pathology , COVID-19/virology , Female , Humans , Immunity, Innate , Interleukin-18/metabolism , Interleukin-6/metabolism , Male , Middle Aged , Receptors, CXCR3/metabolism , Receptors, Interleukin-6/metabolism , SARS-CoV-2/immunology , SARS-CoV-2/isolation & purification , Severity of Illness Index , Th1 Cells/cytology , Th1 Cells/metabolism , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL