Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Language
Document Type
Year range
1.
Preprint in English | medRxiv | ID: ppmedrxiv-21266871

ABSTRACT

Comprehensive data on transmission mitigation behaviors and both SARS-CoV-2 infection and serostatus are needed from large, community-based cohorts to identify COVID-19 risk factors and the impact of public health measures. From July 2020-March 2021, approximately 5,500 adults from the East Bay Area, California were followed over three data collection rounds to investigate the association between geographic and demographic characteristics and transmission mitigation behavior with SARS-CoV-2 prevalence. We estimated the populated-adjusted prevalence of antibodies from SARS-CoV-2 infection and COVID-19 vaccination, and self-reported COVID-19 test positivity. Population-adjusted SARS-CoV-2 seroprevalence was low, increasing from 1.03% (95% CI: 0.50-1.96) in Round 1 (July-September 2020), to 1.37% (95% CI: 0.75-2.39) in Round 2 (October-December 2020), to 2.18% (95% CI: 1.48-3.17) in Round 3 (February-March 2021). Population-adjusted seroprevalence of COVID-19 vaccination was 21.64% (95% CI: 19.20-24.34) in Round 3, with Whites having 4.35% (95% CI: 0.35-8.32) higher COVID-19 vaccine seroprevalence than non-Whites. No evidence for an association between transmission mitigation behavior and seroprevalence was observed. Despite >99% of participants reporting wearing masks, non-Whites, lower-income, and lower-educated individuals had the highest SARS-CoV-2 seroprevalence and lowest vaccination seroprevalence. Results demonstrate that more effective policies are needed to address these disparities and inequities.

2.
Preprint in English | medRxiv | ID: ppmedrxiv-21252830

ABSTRACT

BackgroundAlthough nasopharyngeal (NP) samples have been considered the gold standard for COVID-19 testing, variability in viral load across different anatomical sites could theoretically cause NP samples to be less sensitive than saliva or nasal samples in certain cases. Self-collected samples also have logistical advantages over NP samples, making them amenable to population-scale screening. MethodsTo evaluate sampling alternatives for population screening, we collected NP, saliva, and nasal samples from two cohorts with varied levels and types of symptoms. ResultsIn a mixed cohort of 60 symptomatic and asymptomatic participants, we found that saliva had 88% concordance with NP when tested in the same testing lab (n = 41), and 68% concordance when tested in different testing labs (n = 19). In a second cohort of 20 participants hospitalized for COVID-19, saliva had 74% concordance with NP tested in the same testing lab, but detected virus in two participants that tested negative with NP on the same day. Medical record review showed that the saliva-based testing sensitivity was related to the timing of symptom onset and disease stage. ConclusionsWe find that no sample site will be perfectly sensitive for COVID-19 testing in all situations, and the significance of negative results will always need to be determined in the context of clinical signs and symptoms. Saliva retained high clinical sensitivity while allowing easier collection, minimizing the exposure of healthcare workers and need for personal protective equipment, and making it a viable option for population-scale testing.

SELECTION OF CITATIONS
SEARCH DETAIL