Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Add filters

Document Type
Year range
biorxiv; 2022.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2022.03.18.484950


Despite the remarkable efficacy of COVID-19 vaccines, waning immunity, and the emergence of SARS-CoV-2 variants such as Omicron represents a major global health challenge. Here we present data from a study in non-human primates demonstrating durable protection against the Omicron BA.1 variant induced by a subunit SARS-CoV-2 vaccine, consisting of RBD (receptor binding domain) on the I53-50 nanoparticle, adjuvanted with AS03, currently in Phase 3 clinical trial (NCT05007951). Vaccination induced robust neutralizing antibody (nAb) titers that were maintained at high levels for at least one year after two doses (Pseudovirus nAb GMT: 2207, Live-virus nAb GMT: 1964) against the ancestral strain, but not against Omicron. However, a booster dose at 6-12 months with RBD-Wu or RBD-{beta} (RBD from the Beta variant) displayed on I53-50 elicited equivalent and remarkably high neutralizing titers against the ancestral as well as the Omicron variant. Furthermore, there were substantial and persistent memory T and B cell responses reactive to Beta and Omicron variants. Importantly, vaccination resulted in protection against Omicron infection in the lung (no detectable virus in any animal) and profound suppression of viral burden in the nares (median peak viral load of 7567 as opposed to 1.3x107 copies in unvaccinated animals) at 6 weeks post final booster. Even at 6 months post vaccination, there was significant protection in the lung (with 7 out of 11 animals showing no viral load, 3 out of 11 animals showing ~20-fold lower viral load than unvaccinated controls) and rapid control of virus in the nares. These results highlight the durable cross-protective immunity elicited by the AS03-adjuvanted RBD-I53-50 nanoparticle vaccine platform.

Memory Disorders , COVID-19
biorxiv; 2021.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2021.03.15.435528


Understanding the ability of SARS-CoV-2 vaccine-elicited antibodies to neutralize and protect against emerging variants of concern and other sarbecoviruses is key for guiding vaccine development decisions and public health policies. We show that a clinical stage multivalent SARS-CoV-2 receptor-binding domain nanoparticle vaccine (SARS-CoV-2 RBD-NP) protects mice from SARS-CoV-2-induced disease after a single shot, indicating that the vaccine could allow dose-sparing. SARS-CoV-2 RBD-NP elicits high antibody titers in two non-human primate (NHP) models against multiple distinct RBD antigenic sites known to be recognized by neutralizing antibodies. We benchmarked NHP serum neutralizing activity elicited by RBD-NP against a lead prefusion-stabilized SARS-CoV-2 spike immunogen using a panel of single-residue spike mutants detected in clinical isolates as well as the B.1.1.7 and B.1.351 variants of concern. Polyclonal antibodies elicited by both vaccines are resilient to most RBD mutations tested, but the E484K substitution has similar negative consequences for neutralization, and exhibit modest but comparable neutralization breadth against distantly related sarbecoviruses. We demonstrate that mosaic and cocktail sarbecovirus RBD-NPs elicit broad sarbecovirus neutralizing activity, including against the SARS-CoV-2 B.1.351 variant, and protect mice against severe SARS-CoV challenge even in the absence of the SARS-CoV RBD in the vaccine. This study provides proof of principle that sarbecovirus RBD-NPs induce heterotypic protection and enables advancement of broadly protective sarbecovirus vaccines to the clinic.

Severe Acute Respiratory Syndrome
biorxiv; 2021.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2021.02.10.430696


The development of a portfolio of SARS-CoV-2 vaccines to vaccinate the global population remains an urgent public health imperative. Here, we demonstrate the capacity of a subunit vaccine under clinical development, comprising the SARS-CoV-2 Spike protein receptor-binding domain displayed on a two-component protein nanoparticle (RBD-NP), to stimulate robust and durable neutralizing antibody (nAb) responses and protection against SARS-CoV-2 in non-human primates. We evaluated five different adjuvants combined with RBD-NP including Essai O/W 1849101, a squalene-in-water emulsion; AS03, an alpha-tocopherol-containing squalene-based oil-in-water emulsion used in pandemic influenza vaccines; AS37, a TLR-7 agonist adsorbed to Alum; CpG 1018-Alum (CpG-Alum), a TLR-9 agonist formulated in Alum; or Alum, the most widely used adjuvant. All five adjuvants induced substantial nAb and CD4 T cell responses after two consecutive immunizations. Durable nAb responses were evaluated for RBD-NP/AS03 immunization and the live-virus nAb response was durably maintained up to 154 days post-vaccination. AS03, CpG-Alum, AS37 and Alum groups conferred significant protection against SARS-CoV-2 infection in the pharynges, nares and in the bronchoalveolar lavage. The nAb titers were highly correlated with protection against infection. Furthermore, RBD-NP when used in conjunction with AS03 was as potent as the prefusion stabilized Spike immunogen, HexaPro. Taken together, these data highlight the efficacy of the RBD-NP formulated with clinically relevant adjuvants in promoting robust immunity against SARS-CoV-2 in non-human primates.