Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Add filters

Document Type
Year range
Microorganisms ; 11(4)2023 Apr 07.
Article in English | MEDLINE | ID: covidwho-2292606


Bats are natural hosts of various coronaviruses (CoVs), including human CoVs, via an assumed direct zoonotic spillover or intermediate animal host. The present study aimed to investigate the circulation of CoVs in a bat colony in the Mediterranean region of Croatia. Guano and individual droppings from four bat species were sampled and tested with the E-gene sarbecovirus RT-qPCR, the pan-CoV semi-nested RT-PCR targeting the RdRp gene and NGS. Furthermore, bat blood samples were investigated for the presence of sarbecovirus-specific antibodies with the surrogate virus neutralization test (sVNT). The initial testing showed E-gene Sarebeco RT-qPCR reactivity in 26% of guano samples while the bat droppings tested negative. The application of RdRp semi-nested RT-PCR and NGS revealed the circulation of bat alpha- and betaCoVs. Phylogenetic analysis confirmed the clustering of betaCoV sequence with SARS-CoV-related bat sarbecoviruses and alpha-CoV sequences with representatives of the Minunacovirus subgenus. The results of sVNT show that 29% of bat sera originated from all four species that tested positive. Our results are the first evidence of the circulation of SARS-CoV-related coronaviruses in bats from Croatia.

Environ Res ; 207: 112638, 2022 05 01.
Article in English | MEDLINE | ID: covidwho-1587831


The circulation of SARS-CoV-2 in the environment has been confirmed numerous times, whilst research on the bioaccumulation in bivalve molluscan shellfish (BMS) has been rather scarce. The present study aimed to fulfil the knowledge gap on SARS-CoV-2 circulation in wastewaters and surface waters in this region and to extend the current knowledge on potential presence of SARS-CoV-2 contamination in BMS. The study included 13 archive wastewater and surface water samples from the start of epidemic and 17 influents and effluents from nine wastewater treatment plants (WWTP) of different capacity and treatment stage, sampled during the second epidemic wave. From that period are the most of 77 collected BMS samples, represented by mussels, oysters and warty venus clams harvested along the Dalmatian coast. All samples were processed according to EN ISO 15216-1 2017 using Mengovirus as a whole process control. SARS-CoV-2 detection was performed by real-time and conventional RT-PCR assays targeting E, N and nsp14 protein genes complemented with nsp14 partial sequencing. Rotavirus A (RVA) real-time RT-PCR assay was implemented as an additional evaluation criterion of virus concentration techniques. The results revealed the circulation of SARS-CoV-2 in nine influents and two secondary treatment effluents from eight WWTPs, while all samples from the start of epidemic (wastewaters, surface waters) were negative which was influenced by sampling strategy. All tertiary effluents and BMS were SARS-CoV-2 negative. The results of RVA amplification were beneficial in evaluating virus concentration techniques and provided insights into RVA dynamics within the environment and community. In conclusion, the results of the present study confirm SARS-CoV-2 circulation in Croatian wastewaters during the second epidemic wave while extending the knowledge on wastewater treatment potential in SARS-CoV-2 removal. Our findings represent a significant contribution to the current state of knowledge that considers BMS of a very low food safety risk regarding SARS-CoV-2.

Bivalvia , COVID-19 , Animals , Humans , SARS-CoV-2 , Shellfish , Wastewater
Pathogens ; 10(6)2021 May 21.
Article in English | MEDLINE | ID: covidwho-1244090


Due to SARS CoV-2 recombination rates, number of infected people and recent reports of environmental contamination, the possibility of SARS CoV-2 transmission to animals can be expected. We tested samples of dominant free-living and captive wildlife species in Croatia for the presence of anti-SARS CoV-2 antibodies and viral RNA. In total, from June 2020 until February 2021, we tested blood, muscle extract and fecal samples of 422 free-living wild boars (Sus scrofa), red foxes (Vulpes vulpes) and jackals (Canis aureus); blood and cloacal swabs of 111 yellow-legged gulls (Larus michahellis) and fecal samples of 32 zoo animals. A commercially available ELISA (ID.Vet, France) and as a confirmatory test, a surrogate virus neutralization test (sVNT; GenScript, Netherlands) were used. Fecal samples were tested for the presence of viral RNA by a real-time RT-PCR protocol. Fifteen out of 533 (2.8%) positive ELISA results were detected; in wild boars (3.9%), red foxes (2.9%) and jackals (4.6%). However, the positive findings were not confirmed by sVNT. No viral RNA was found. In conclusion, no spillover occurred within the investigated period (second COVID-19 wave). However, further investigation is needed, especially regarding wildlife sample features for serological tests.