Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
Trials ; 23(1): 105, 2022 Feb 02.
Article in English | MEDLINE | ID: covidwho-2098423

ABSTRACT

BACKGROUND: Noninvasive respiratory support is frequently needed for patients with acute hypoxemic respiratory failure due to coronavirus disease 19 (COVID-19). Helmet noninvasive ventilation has multiple advantages over other oxygen support modalities but data about effectiveness are limited. METHODS: In this multicenter randomized trial of helmet noninvasive ventilation for COVID-19 patients, 320 adult ICU patients (aged ≥14 years or as per local standards) with suspected or confirmed COVID-19 and acute hypoxemic respiratory failure (ratio of arterial oxygen partial pressure to fraction of inspired oxygen < 200 despite supplemental oxygen with a partial/non-rebreathing mask at a flow rate of 10 L/min or higher) will be randomized to helmet noninvasive ventilation with usual care or usual care alone, which may include mask noninvasive ventilation, high-flow nasal oxygen, or standard oxygen therapy. The primary outcome is death from any cause within 28 days after randomization. The trial has 80% power to detect a 15% absolute risk reduction in 28-day mortality from 40 to 25%. The primary outcome will be compared between the helmet and usual care group in the intention-to-treat using the chi-square test. Results will be reported as relative risk  and 95% confidence interval. The first patient was enrolled on February 8, 2021. As of August 1, 2021, 252 patients have been enrolled from 7 centers in Saudi Arabia and Kuwait. DISCUSSION: We developed a detailed statistical analysis plan to guide the analysis of the Helmet-COVID trial, which is expected to conclude enrollment in November 2021. TRIAL REGISTRATION: ClinicalTrials.gov NCT04477668 . Registered on July 20, 2020.


Subject(s)
COVID-19 , Noninvasive Ventilation , Respiratory Insufficiency , Adult , Head Protective Devices , Humans , Noninvasive Ventilation/adverse effects , Respiratory Insufficiency/diagnosis , Respiratory Insufficiency/therapy , SARS-CoV-2
2.
JAMA ; 328(11): 1063-1072, 2022 09 20.
Article in English | MEDLINE | ID: covidwho-2047353

ABSTRACT

Importance: Helmet noninvasive ventilation has been used in patients with COVID-19 with the premise that helmet interface is more effective than mask interface in delivering prolonged treatments with high positive airway pressure, but data about its effectiveness are limited. Objective: To evaluate whether helmet noninvasive ventilation compared with usual respiratory support reduces mortality in patients with acute hypoxemic respiratory failure due to COVID-19 pneumonia. Design, Setting, and Participants: This was a multicenter, pragmatic, randomized clinical trial that was conducted in 8 sites in Saudi Arabia and Kuwait between February 8, 2021, and November 16, 2021. Adult patients with acute hypoxemic respiratory failure (n = 320) due to suspected or confirmed COVID-19 were included. The final follow-up date for the primary outcome was December 14, 2021. Interventions: Patients were randomized to receive helmet noninvasive ventilation (n = 159) or usual respiratory support (n = 161), which included mask noninvasive ventilation, high-flow nasal oxygen, and standard oxygen. Main Outcomes and Measures: The primary outcome was 28-day all-cause mortality. There were 12 prespecified secondary outcomes, including endotracheal intubation, barotrauma, skin pressure injury, and serious adverse events. Results: Among 322 patients who were randomized, 320 were included in the primary analysis, all of whom completed the trial. Median age was 58 years, and 187 were men (58.4%). Within 28 days, 43 of 159 patients (27.0%) died in the helmet noninvasive ventilation group compared with 42 of 161 (26.1%) in the usual respiratory support group (risk difference, 1.0% [95% CI, -8.7% to 10.6%]; relative risk, 1.04 [95% CI, 0.72-1.49]; P = .85). Within 28 days, 75 of 159 patients (47.2%) required endotracheal intubation in the helmet noninvasive ventilation group compared with 81 of 161 (50.3%) in the usual respiratory support group (risk difference, -3.1% [95% CI, -14.1% to 7.8%]; relative risk, 0.94 [95% CI, 0.75-1.17]). There were no significant differences between the 2 groups in any of the prespecified secondary end points. Barotrauma occurred in 30 of 159 patients (18.9%) in the helmet noninvasive ventilation group and 25 of 161 (15.5%) in the usual respiratory support group. Skin pressure injury occurred in 5 of 159 patients (3.1%) in the helmet noninvasive ventilation group and 10 of 161 (6.2%) in the usual respiratory support group. There were 2 serious adverse events in the helmet noninvasive ventilation group and 1 in the usual respiratory support group. Conclusions and Relevance: Results of this study suggest that helmet noninvasive ventilation did not significantly reduce 28-day mortality compared with usual respiratory support among patients with acute hypoxemic respiratory failure due to COVID-19 pneumonia. However, interpretation of the findings is limited by imprecision in the effect estimate, which does not exclude potentially clinically important benefit or harm. Trial Registration: ClinicalTrials.gov Identifier: NCT04477668.


Subject(s)
COVID-19 , Noninvasive Ventilation , Oxygen Inhalation Therapy , Respiratory Insufficiency , Acute Disease , Barotrauma/etiology , COVID-19/complications , COVID-19/mortality , COVID-19/therapy , Female , Humans , Hypoxia/etiology , Hypoxia/mortality , Hypoxia/therapy , Male , Middle Aged , Noninvasive Ventilation/adverse effects , Noninvasive Ventilation/methods , Oxygen/administration & dosage , Oxygen/adverse effects , Oxygen Inhalation Therapy/adverse effects , Oxygen Inhalation Therapy/methods , Respiratory Insufficiency/etiology , Respiratory Insufficiency/mortality , Respiratory Insufficiency/therapy
3.
J Infect Public Health ; 15(7): 826-834, 2022 Jul.
Article in English | MEDLINE | ID: covidwho-1895224

ABSTRACT

BACKGROUND: Coronavirus disease-19 (COVID-19) is caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and is currently a major cause of intensive care unit (ICU) admissions globally. The role of machine learning in the ICU is evolving but currently limited to diagnostic and prognostic values. A decision tree (DT) algorithm is a simple and intuitive machine learning method that provides sequential nonlinear analysis of variables. It is simple and might be a valuable tool for bedside physicians during COVID-19 to predict ICU outcomes and help in critical decision-making like end-of-life decisions and bed allocation in the event of limited ICU bed capacities. Herein, we utilized a machine learning DT algorithm to describe the association of a predefined set of variables and 28-day ICU outcome in adult COVID-19 patients admitted to the ICU. We highlight the value of utilizing a machine learning DT algorithm in the ICU at the time of a COVID-19 pandemic. METHODS: This was a prospective and multicenter cohort study involving 14 hospitals in Saudi Arabia. We included critically ill COVID-19 patients admitted to the ICU between March 1, 2020, and October 31, 2020. The predictors of 28-day ICU mortality were identified using two predictive models: conventional logistic regression and DT analyses. RESULTS: There were 1468 critically ill COVID-19 patients included in the study. The 28-day ICU mortality was 540 (36.8 %), and the 90-day mortality was 600 (40.9 %). The DT algorithm identified five variables that were integrated into the algorithm to predict 28-day ICU outcomes: need for intubation, need for vasopressors, age, gender, and PaO2/FiO2 ratio. CONCLUSION: DT is a simple tool that might be utilized in the ICU to identify critically ill COVID-19 patients who are at high risk of 28-day ICU mortality. However, further studies and external validation are still required.


Subject(s)
COVID-19 , Adult , Algorithms , Cohort Studies , Critical Illness , Decision Trees , Humans , Intensive Care Units , Machine Learning , Pandemics , Prospective Studies , Retrospective Studies , SARS-CoV-2
4.
BMJ Open ; 11(8): e052169, 2021 08 26.
Article in English | MEDLINE | ID: covidwho-1376510

ABSTRACT

INTRODUCTION: Non-invasive ventilation (NIV) delivered by helmet has been used for respiratory support of patients with acute hypoxaemic respiratory failure due to COVID-19 pneumonia. The aim of this study was to compare helmet NIV with usual care versus usual care alone to reduce mortality. METHODS AND ANALYSIS: This is a multicentre, pragmatic, parallel randomised controlled trial that compares helmet NIV with usual care to usual care alone in a 1:1 ratio. A total of 320 patients will be enrolled in this study. The primary outcome is 28-day all-cause mortality. The primary outcome will be compared between the two study groups in the intention-to-treat and per-protocol cohorts. An interim analysis will be conducted for both safety and effectiveness. ETHICS AND DISSEMINATION: Approvals are obtained from the institutional review boards of each participating institution. Our findings will be published in peer-reviewed journals and presented at relevant conferences and meetings. TRIAL REGISTRATION NUMBER: NCT04477668.


Subject(s)
COVID-19 , Noninvasive Ventilation , Respiratory Insufficiency , Head Protective Devices , Humans , Multicenter Studies as Topic , Randomized Controlled Trials as Topic , Respiratory Insufficiency/therapy , SARS-CoV-2
5.
Clin Infect Dis ; 70(9): 1837-1844, 2020 04 15.
Article in English | MEDLINE | ID: covidwho-822200

ABSTRACT

BACKGROUND: The objective of this study was to evaluate the effect of ribavirin and recombinant interferon (RBV/rIFN) therapy on the outcomes of critically ill patients with Middle East respiratory syndrome (MERS), accounting for time-varying confounders. METHODS: This is a retrospective cohort study of critically ill patients with laboratory-confirmed MERS from 14 hospitals in Saudi Arabia diagnosed between September 2012 and January 2018. We evaluated the association of RBV/rIFN with 90-day mortality and MERS coronavirus (MERS-CoV) RNA clearance using marginal structural modeling to account for baseline and time-varying confounders. RESULTS: Of 349 MERS patients, 144 (41.3%) patients received RBV/rIFN (RBV and/or rIFN-α2a, rIFN-α2b, or rIFN-ß1a; none received rIFN-ß1b). RBV/rIFN was initiated at a median of 2 days (Q1, Q3: 1, 3 days) from intensive care unit admission. Crude 90-day mortality was higher in patients with RBV/rIFN compared to no RBV/rIFN (106/144 [73.6%] vs 126/205 [61.5%]; P = .02]. After adjusting for baseline and time-varying confounders using a marginal structural model, RBV/rIFN was not associated with changes in 90-day mortality (adjusted odds ratio, 1.03 [95% confidence interval {CI}, .73-1.44]; P = .87) or with more rapid MERS-CoV RNA clearance (adjusted hazard ratio, 0.65 [95% CI, .30-1.44]; P = .29). CONCLUSIONS: In this observational study, RBV/rIFN (RBV and/or rIFN-α2a, rIFN-α2b, or rIFN-ß1a) therapy was commonly used in critically ill MERS patients but was not associated with reduction in 90-day mortality or in faster MERS-CoV RNA clearance.


Subject(s)
Antiviral Agents/therapeutic use , Coronavirus Infections/mortality , Coronavirus Infections/therapy , Interferon alpha-2/therapeutic use , Ribavirin/therapeutic use , Aged , Critical Illness , Female , Humans , Intensive Care Units , Male , Middle Aged , Middle East Respiratory Syndrome Coronavirus , Pneumonia, Viral/drug therapy , RNA, Viral/blood , Retrospective Studies , Saudi Arabia , Treatment Outcome
SELECTION OF CITATIONS
SEARCH DETAIL