Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
1.
MMWR Morb Mortal Wkly Rep ; 71(13): 495-502, 2022 Apr 01.
Article in English | MEDLINE | ID: covidwho-1771891

ABSTRACT

CDC recommends that all persons aged ≥18 years receive a single COVID-19 vaccine booster dose ≥2 months after receipt of an Ad.26.COV2.S (Janssen [Johnson & Johnson]) adenovirus vector-based primary series vaccine; a heterologous COVID-19 mRNA vaccine is preferred over a homologous (matching) Janssen vaccine for booster vaccination. This recommendation was made in light of the risks for rare but serious adverse events following receipt of a Janssen vaccine, including thrombosis with thrombocytopenia syndrome and Guillain-Barré syndrome† (1), and clinical trial data indicating similar or higher neutralizing antibody response following heterologous boosting compared with homologous boosting (2). Data on real-world vaccine effectiveness (VE) of different booster strategies following a primary Janssen vaccine dose are limited, particularly during the period of Omicron variant predominance. The VISION Network§ determined real-world VE of 1 Janssen vaccine dose and 2 alternative booster dose strategies: 1) a homologous booster (i.e., 2 Janssen doses) and 2) a heterologous mRNA booster (i.e., 1 Janssen dose/1 mRNA dose). In addition, VE of these booster strategies was compared with VE of a homologous booster following mRNA primary series vaccination (i.e., 3 mRNA doses). The study examined 80,287 emergency department/urgent care (ED/UC) visits¶ and 25,244 hospitalizations across 10 states during December 16, 2021-March 7, 2022, when Omicron was the predominant circulating variant.** VE against laboratory-confirmed COVID-19-associated ED/UC encounters was 24% after 1 Janssen dose, 54% after 2 Janssen doses, 79% after 1 Janssen/1 mRNA dose, and 83% after 3 mRNA doses. VE for the same vaccination strategies against laboratory-confirmed COVID-19-associated hospitalizations were 31%, 67%, 78%, and 90%, respectively. All booster strategies provided higher protection than a single Janssen dose against ED/UC visits and hospitalizations during Omicron variant predominance. Vaccination with 1 Janssen/1 mRNA dose provided higher protection than did 2 Janssen doses against COVID-19-associated ED/UC visits and was comparable to protection provided by 3 mRNA doses during the first 120 days after a booster dose. However, 3 mRNA doses provided higher protection against COVID-19-associated hospitalizations than did other booster strategies during the same time interval since booster dose. All adults who have received mRNA vaccines for their COVID-19 primary series vaccination should receive an mRNA booster dose when eligible. Adults who received a primary Janssen vaccine dose should preferentially receive a heterologous mRNA vaccine booster dose ≥2 months later, or a homologous Janssen vaccine booster dose if mRNA vaccine is contraindicated or unavailable. Further investigation of the durability of protection afforded by different booster strategies is warranted.


Subject(s)
COVID-19 , Influenza Vaccines , Adolescent , Adult , Ambulatory Care , COVID-19/prevention & control , COVID-19 Vaccines , Emergency Service, Hospital , Hospitalization , Humans , Immunization, Secondary , SARS-CoV-2 , Vaccines, Synthetic
2.
Clin Infect Dis ; 2022 Feb 07.
Article in English | MEDLINE | ID: covidwho-1769232

ABSTRACT

Using vaccine data combined with electronic health records, we report that mRNA boosters provide greater protection than a two-dose regimen against SARS-CoV-2 infection and related hospitalizations. The benefit of a booster was more evident in the elderly and those with comorbidities. These results support the case for COVID-19 boosters.

3.
Vector Borne Zoonotic Dis ; 21(11): 839-842, 2021 11.
Article in English | MEDLINE | ID: covidwho-1746959

ABSTRACT

Background: A history of Lyme disease can complicate the interpretation of Lyme disease serology in acutely symptomatic patients. Materials and Methods: We prospectively enrolled children undergoing evaluation for Lyme disease in the emergency department of one of eight participating Pedi Lyme Net centers. We selected symptomatic children with a Lyme disease history (definite, probable, or none) as well as an available research biosample. We defined a Lyme disease case with either an erythema migrans (EM) lesion or positive two-tier serology with compatible symptoms. Using a generalized estimating equation, we examined the relationship between time from previous Lyme disease diagnosis and current Lyme disease after adjustment for patient demographics and symptoms as well as clustering by center. Results: Of 2501 prospectively enrolled study patients, 126 (5.0%) reported a history of definite or probable Lyme disease. Of these children with previous Lyme disease, 47 met diagnostic criteria for Lyme disease at the time of enrollment (37.3%; 95% confidence interval [CI] 29.1-45.7%); 2 had an EM lesion, and 45 had positive two-tier Lyme disease serology. Over time from the previous Lyme disease diagnosis, the less likely the patient met diagnostic criteria for Lyme disease (adjusted odds ratio 0.62 per time period; 95% CI 0.46-0.84). Conclusions: For children with a history of Lyme disease before enrollment, one-third met the diagnostic criteria for acute Lyme disease with a declining rate over time from previous Lyme disease diagnosis. Novel Lyme disease diagnostics are needed to help distinguish acute from previous Lyme disease.


Subject(s)
Lyme Disease , Child , Humans , Lyme Disease/diagnosis , Lyme Disease/epidemiology , Sensitivity and Specificity
4.
MMWR Morb Mortal Wkly Rep ; 71(9): 352-358, 2022 Mar 04.
Article in English | MEDLINE | ID: covidwho-1727017

ABSTRACT

The efficacy of the BNT162b2 (Pfizer-BioNTech) vaccine against laboratory-confirmed COVID-19 exceeded 90% in clinical trials that included children and adolescents aged 5-11, 12-15, and 16-17 years (1-3). Limited real-world data on 2-dose mRNA vaccine effectiveness (VE) in persons aged 12-17 years (referred to as adolescents in this report) have also indicated high levels of protection against SARS-CoV-2 (the virus that causes COVID-19) infection and COVID-19-associated hospitalization (4-6); however, data on VE against the SARS-CoV-2 B.1.1.529 (Omicron) variant and duration of protection are limited. Pfizer-BioNTech VE data are not available for children aged 5-11 years. In partnership with CDC, the VISION Network* examined 39,217 emergency department (ED) and urgent care (UC) encounters and 1,699 hospitalizations† among persons aged 5-17 years with COVID-19-like illness across 10 states during April 9, 2021-January 29, 2022,§ to estimate VE using a case-control test-negative design. Among children aged 5-11 years, VE against laboratory-confirmed COVID-19-associated ED and UC encounters 14-67 days after dose 2 (the longest interval after dose 2 in this age group) was 46%. Among adolescents aged 12-15 and 16-17 years, VE 14-149 days after dose 2 was 83% and 76%, respectively; VE ≥150 days after dose 2 was 38% and 46%, respectively. Among adolescents aged 16-17 years, VE increased to 86% ≥7 days after dose 3 (booster dose). VE against COVID-19-associated ED and UC encounters was substantially lower during the Omicron predominant period than the B.1.617.2 (Delta) predominant period among adolescents aged 12-17 years, with no significant protection ≥150 days after dose 2 during Omicron predominance. However, in adolescents aged 16-17 years, VE during the Omicron predominant period increased to 81% ≥7 days after a third booster dose. During the full study period, including pre-Delta, Delta, and Omicron predominant periods, VE against laboratory-confirmed COVID-19-associated hospitalization among children aged 5-11 years was 74% 14-67 days after dose 2, with wide CIs that included zero. Among adolescents aged 12-15 and 16-17 years, VE 14-149 days after dose 2 was 92% and 94%, respectively; VE ≥150 days after dose 2 was 73% and 88%, respectively. All eligible children and adolescents should remain up to date with recommended COVID-19 vaccinations, including a booster dose for those aged 12-17 years.


Subject(s)
/administration & dosage , COVID-19 Vaccines/administration & dosage , COVID-19/prevention & control , SARS-CoV-2/immunology , /statistics & numerical data , Adolescent , Ambulatory Care/statistics & numerical data , Child , Child, Preschool , Emergency Service, Hospital/statistics & numerical data , Female , Hospitalization/statistics & numerical data , Humans , Immunization, Secondary , Male , United States
5.
MMWR Morb Mortal Wkly Rep ; 71(7): 255-263, 2022 Feb 18.
Article in English | MEDLINE | ID: covidwho-1689713

ABSTRACT

CDC recommends that all persons aged ≥12 years receive a booster dose of COVID-19 mRNA vaccine ≥5 months after completion of a primary mRNA vaccination series and that immunocompromised persons receive a third primary dose.* Waning of vaccine protection after 2 doses of mRNA vaccine has been observed during the period of the SARS-CoV-2 B.1.617.2 (Delta) variant predominance† (1-5), but little is known about durability of protection after 3 doses during periods of Delta or SARS-CoV-2 B.1.1.529 (Omicron) variant predominance. A test-negative case-control study design using data from eight VISION Network sites§ examined vaccine effectiveness (VE) against COVID-19 emergency department/urgent care (ED/UC) visits and hospitalizations among U.S. adults aged ≥18 years at various time points after receipt of a second or third vaccine dose during two periods: Delta variant predominance and Omicron variant predominance (i.e., periods when each variant accounted for ≥50% of sequenced isolates).¶ Persons categorized as having received 3 doses included those who received a third dose in a primary series or a booster dose after a 2 dose primary series (including the reduced-dosage Moderna booster). The VISION Network analyzed 241,204 ED/UC encounters** and 93,408 hospitalizations across 10 states during August 26, 2021-January 22, 2022. VE after receipt of both 2 and 3 doses was lower during the Omicron-predominant than during the Delta-predominant period at all time points evaluated. During both periods, VE after receipt of a third dose was higher than that after a second dose; however, VE waned with increasing time since vaccination. During the Omicron period, VE against ED/UC visits was 87% during the first 2 months after a third dose and decreased to 66% among those vaccinated 4-5 months earlier; VE against hospitalizations was 91% during the first 2 months following a third dose and decreased to 78% ≥4 months after a third dose. For both Delta- and Omicron-predominant periods, VE was generally higher for protection against hospitalizations than against ED/UC visits. All eligible persons should remain up to date with recommended COVID-19 vaccinations to best protect against COVID-19-associated hospitalizations and ED/UC visits.


Subject(s)
Ambulatory Care/statistics & numerical data , COVID-19 Vaccines/administration & dosage , COVID-19/prevention & control , Hospitalization/statistics & numerical data , SARS-CoV-2/immunology , /administration & dosage , Adult , Aged , Aged, 80 and over , Case-Control Studies , Emergency Service, Hospital , Female , Humans , Male , Middle Aged , Time Factors , United States , Young Adult
7.
MMWR Morb Mortal Wkly Rep ; 70(44): 1553-1559, 2021 Nov 05.
Article in English | MEDLINE | ID: covidwho-1502903

ABSTRACT

Immunocompromised persons, defined as those with suppressed humoral or cellular immunity resulting from health conditions or medications, account for approximately 3% of the U.S. adult population (1). Immunocompromised adults are at increased risk for severe COVID-19 outcomes (2) and might not acquire the same level of protection from COVID-19 mRNA vaccines as do immunocompetent adults (3,4). To evaluate vaccine effectiveness (VE) among immunocompromised adults, data from the VISION Network* on hospitalizations among persons aged ≥18 years with COVID-19-like illness from 187 hospitals in nine states during January 17-September 5, 2021 were analyzed. Using selected discharge diagnoses,† VE against COVID-19-associated hospitalization conferred by completing a 2-dose series of an mRNA COVID-19 vaccine ≥14 days before the index hospitalization date§ (i.e., being fully vaccinated) was evaluated using a test-negative design comparing 20,101 immunocompromised adults (10,564 [53%] of whom were fully vaccinated) and 69,116 immunocompetent adults (29,456 [43%] of whom were fully vaccinated). VE of 2 doses of mRNA COVID-19 vaccine against COVID-19-associated hospitalization was lower among immunocompromised patients (77%; 95% confidence interval [CI] = 74%-80%) than among immunocompetent patients (90%; 95% CI = 89%-91%). This difference persisted irrespective of mRNA vaccine product, age group, and timing of hospitalization relative to SARS-CoV-2 (the virus that causes COVID-19) B.1.617.2 (Delta) variant predominance in the state of hospitalization. VE varied across immunocompromising condition subgroups, ranging from 59% (organ or stem cell transplant recipients) to 81% (persons with a rheumatologic or inflammatory disorder). Immunocompromised persons benefit from mRNA COVID-19 vaccination but are less protected from severe COVID-19 outcomes than are immunocompetent persons, and VE varies among immunocompromised subgroups. Immunocompromised persons receiving mRNA COVID-19 vaccines should receive 3 doses and a booster, consistent with CDC recommendations (5), practice nonpharmaceutical interventions, and, if infected, be monitored closely and considered early for proven therapies that can prevent severe outcomes.


Subject(s)
COVID-19 Vaccines/administration & dosage , COVID-19/prevention & control , Hospitalization/statistics & numerical data , Immunocompromised Host/immunology , Adolescent , Adult , Aged , Aged, 80 and over , COVID-19/epidemiology , COVID-19/immunology , COVID-19/therapy , COVID-19 Vaccines/immunology , Female , Humans , Immunization Schedule , Laboratories , Male , Middle Aged , SARS-CoV-2/immunology , SARS-CoV-2/isolation & purification , United States/epidemiology , Vaccines, Synthetic/administration & dosage , Young Adult
8.
MMWR Morb Mortal Wkly Rep ; 70(44): 1539-1544, 2021 Nov 05.
Article in English | MEDLINE | ID: covidwho-1502901

ABSTRACT

Previous infection with SARS-CoV-2 (the virus that causes COVID-19) or COVID-19 vaccination can provide immunity and protection from subsequent SARS-CoV-2 infection and illness. CDC used data from the VISION Network* to examine hospitalizations in adults with COVID-19-like illness and compared the odds of receiving a positive SARS-CoV-2 test result, and thus having laboratory-confirmed COVID-19, between unvaccinated patients with a previous SARS-CoV-2 infection occurring 90-179 days before COVID-19-like illness hospitalization, and patients who were fully vaccinated with an mRNA COVID-19 vaccine 90-179 days before hospitalization with no previous documented SARS-CoV-2 infection. Hospitalized adults aged ≥18 years with COVID-19-like illness were included if they had received testing at least twice: once associated with a COVID-19-like illness hospitalization during January-September 2021 and at least once earlier (since February 1, 2020, and ≥14 days before that hospitalization). Among COVID-19-like illness hospitalizations in persons whose previous infection or vaccination occurred 90-179 days earlier, the odds of laboratory-confirmed COVID-19 (adjusted for sociodemographic and health characteristics) among unvaccinated, previously infected adults were higher than the odds among fully vaccinated recipients of an mRNA COVID-19 vaccine with no previous documented infection (adjusted odds ratio [aOR] = 5.49; 95% confidence interval [CI] = 2.75-10.99). These findings suggest that among hospitalized adults with COVID-19-like illness whose previous infection or vaccination occurred 90-179 days earlier, vaccine-induced immunity was more protective than infection-induced immunity against laboratory-confirmed COVID-19. All eligible persons should be vaccinated against COVID-19 as soon as possible, including unvaccinated persons previously infected with SARS-CoV-2.


Subject(s)
COVID-19/diagnosis , COVID-19/immunology , SARS-CoV-2/isolation & purification , Adolescent , Adult , Aged , Aged, 80 and over , COVID-19/therapy , COVID-19 Vaccines/administration & dosage , COVID-19 Vaccines/immunology , Female , Hospitalization/statistics & numerical data , Humans , Laboratories , Male , Middle Aged , SARS-CoV-2/immunology , Vaccines, Synthetic/administration & dosage , Vaccines, Synthetic/immunology , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL