Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
1.
Vaccines (Basel) ; 10(5)2022 May 09.
Article in English | MEDLINE | ID: covidwho-1862950

ABSTRACT

A COVID-19 vaccine BNT162b2 (Pfizer-BioNTech) has recently been authorized for adolescents in the US. However, the impact of adverse events on adolescents after vaccination has not been fully investigated. To assess the safety of the COVID-19 vaccine in adolescents, the incidence of adverse events (AEs) in adolescents and adults was compared after vaccination. We included 6304 adolescents (68.14 per 100,000 people) who reported adverse events using vaccine adverse event reporting system (VAERS) data from 10 May 2021 to 30 September 2021. The mean age was 13.6 ± 1.1 years and women (52.7%) outnumbered men. We analyzed severe and common adverse events in response to the COVID-19 vaccine among 6304 adolescents (68.14 per 100,000 people; 52% female; mean age, 13.6 ± 1.1 years). The risk of myocarditis or pericarditis among adolescents was significantly higher in men than in women (OR = 6.61, 95% CI = 4.43 to 9.88; p < 0.001), with a higher frequency after the second dose of the vaccine (OR = 8.52, 95% CI = 5.79 to 12.54; p < 0.001). In addition, severe adverse events such as multisystem inflammatory syndromes, where the incidence rate per 100,000 people was 0.11 (n = 10), and the relative risk was 244.3 (95% CI = 31.27 to 1908.38; p < 0.001), were significantly higher in adolescents than in adults. The risk of the inflammatory response to the COVID-19 vaccine, including myocarditis, pericarditis, or multisystem inflammatory syndromes, was significantly higher in men than in women, with a higher frequency in adolescents than in adults. The inflammation-related AEs may require close monitoring and management in adolescents.

2.
Biomol NMR Assign ; 16(1): 17-25, 2022 04.
Article in English | MEDLINE | ID: covidwho-1827073

ABSTRACT

The ongoing pandemic of the respiratory disease COVID-19 is caused by the SARS-CoV-2 (SCoV2) virus. SCoV2 is a member of the Betacoronavirus genus. The 30 kb positive sense, single stranded RNA genome of SCoV2 features 5'- and 3'-genomic ends that are highly conserved among Betacoronaviruses. These genomic ends contain structured cis-acting RNA elements, which are involved in the regulation of viral replication and translation. Structural information about these potential antiviral drug targets supports the development of novel classes of therapeutics against COVID-19. The highly conserved branched stem-loop 5 (SL5) found within the 5'-untranslated region (5'-UTR) consists of a basal stem and three stem-loops, namely SL5a, SL5b and SL5c. Both, SL5a and SL5b feature a 5'-UUUCGU-3' hexaloop that is also found among Alphacoronaviruses. Here, we report the extensive 1H, 13C and 15N resonance assignment of the 37 nucleotides (nts) long sequence spanning SL5b and SL5c (SL5b + c), as basis for further in-depth structural studies by solution NMR spectroscopy.


Subject(s)
COVID-19 , SARS-CoV-2 , 5' Untranslated Regions , Humans , Magnetic Resonance Spectroscopy , Nuclear Magnetic Resonance, Biomolecular
3.
ChemPhysChem ; 23(4):e202200048, 2022.
Article in English | Wiley | ID: covidwho-1704901

ABSTRACT

The Cover Feature illustrates how artifact-free 2D NOE correlations between labile protons can be obtained from an extended Hadamard encoding/decoding matrix, which supersedes problems in conventional Hadamard schemes. The sensitivity-enhancing abilities of extended Hadamard encoding operating in conjunction with solvent repolarization mechanisms are demonstrated on GHz NMR studies on SARS-CoV-2 RNA fragments. More information can be found in the Article by Lucio Frydman and co-workers.

4.
Chemphyschem ; 23(4): e202100704, 2022 02 16.
Article in English | MEDLINE | ID: covidwho-1589144

ABSTRACT

Hadamard encoded saturation transfer can significantly improve the efficiency of NOE-based NMR correlations from labile protons in proteins, glycans and RNAs, increasing the sensitivity of cross-peaks by an order of magnitude and shortening experimental times by ≥100-fold. These schemes, however, fail when tackling correlations within a pool of labile protons - for instance imino-imino correlations in RNAs or amide-amide correlations in proteins. Here we analyze the origin of the artifacts appearing in these experiments and propose a way to obtain artifact-free correlations both within the labile pool as well as between labile and non-labile 1 Hs, while still enjoying the gains arising from Hadamard encoding and solvent repolarizations. The principles required for implementing what we define as the extended Hadamard scheme are derived, and its clean, artifact-free, sensitivity-enhancing performance is demonstrated on RNA fragments derived from the SARS-CoV-2 genome. Sensitivity gains per unit time approaching an order of magnitude are then achieved in both imino-imino and imino-amino/aromatic protons 2D correlations; similar artifact-free sensitivity gains can be observed when carrying out extended Hadamard encodings of 3D NOESY/HSQC-type experiments. The resulting spectra reveal significantly more correlations than their conventionally acquired counterparts, which can support the spectral assignment and secondary structure determination of structured RNA elements.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Magnetic Resonance Spectroscopy/methods , Proteins/chemistry , RNA
5.
Diagnostics (Basel) ; 11(10)2021 Sep 28.
Article in English | MEDLINE | ID: covidwho-1480622

ABSTRACT

Wireless capsule endoscopy was first developed to observe the small intestine. A small capsule can be swallowed and images of gastrointestinal tract are taken with natural movement of peristalsis. Application of capsule endoscopy for observing the stomach has also received much attention as a useful alternative to esophagogastroduodenoscopy, but anatomical characteristics of the stomach have demanded technical obstacles that need to be tackled: clear visualization and active movements that could be controlled. Different methods of controlling the capsule within stomach have been studied and magnetic manipulation is the only system that is currently used in clinical settings. Magnets within the capsule can be controlled with a hand-held magnet paddle, robotic arm, and electromagnetic coil system. Studies on healthy volunteers and patients with upper gastrointestinal symptoms have shown that it is a safe and effective alternative method of observing the stomach. This work reviews different magnetic locomotion systems that have been used for observation of the stomach as an emerging new application of wireless capsule endoscopy.

6.
Technol Soc ; 67: 101733, 2021 Nov.
Article in English | MEDLINE | ID: covidwho-1415803

ABSTRACT

The COVID-19 lockdown has transformed the way of life for many people. One key change is media intake, as many individuals reported an increase in media consumption during the COVID-19 lockdown. Specifically, social media and television usage increased. In this regard, the present study examines social TV viewing, the simultaneous use of watching TV while communicating with others about the TV content on various communication technologies, during the COVID-19 lockdown. An online survey was conducted to collect data from college students in the United States during the COVID-19 lockdown. Primary results indicate that different motives predict different uses of communication platforms for social TV engagement, such as public platforms, text-based private platforms, and video-based private platforms. Specifically, the social motive significantly predicts social TV engagement on most of the platforms. Further, the study finds that social presence of virtual co-viewers mediates the relationship between social TV engagement and social TV enjoyment. Overall, the study's findings provide a meaningful understanding of social TV viewing when physical social gatherings are restricted.

7.
J Am Chem Soc ; 143(13): 4942-4948, 2021 04 07.
Article in English | MEDLINE | ID: covidwho-1387161

ABSTRACT

Multidimensional NOESY experiments targeting correlations between exchangeable imino and amino protons provide valuable information about base pairing in nucleic acids. It has been recently shown that the sensitivity of homonuclear correlations involving RNA's labile imino protons can be significantly enhanced, by exploiting the repolarization brought about by solvent exchanges. Homonuclear correlations, however, are of limited spectral resolution, and usually incapable of tackling relatively large homopolymers with repeating structures like RNAs. This study presents a heteronuclear-resolved version of those NOESY experiments, in which magnetization transfers between the aqueous solvent and the nucleic acid protons are controlled by selecting specific chemical shift combinations of a coupled 1H-15N spin pair. This selective control effectively leads to a pseudo-3D version of HSQC-NOESY, but with cross-peaks enhanced by ∼2-5× as compared with conventional 2D NOESY counterparts. The enhanced signal sensitivity as well as access to both 15N-1H and 1H-1H NOESY dimensions can greatly facilitate RNA assignments and secondary structure determinations, as demonstrated here with the analysis of genome fragments derived from the SARS-CoV-2 virus.


Subject(s)
Magnetic Phenomena , Magnetic Resonance Spectroscopy , RNA, Viral/chemistry , SARS-CoV-2/genetics , Temperature
8.
J Am Chem Soc ; 143(13): 4942-4948, 2021 04 07.
Article in English | MEDLINE | ID: covidwho-1157892

ABSTRACT

Multidimensional NOESY experiments targeting correlations between exchangeable imino and amino protons provide valuable information about base pairing in nucleic acids. It has been recently shown that the sensitivity of homonuclear correlations involving RNA's labile imino protons can be significantly enhanced, by exploiting the repolarization brought about by solvent exchanges. Homonuclear correlations, however, are of limited spectral resolution, and usually incapable of tackling relatively large homopolymers with repeating structures like RNAs. This study presents a heteronuclear-resolved version of those NOESY experiments, in which magnetization transfers between the aqueous solvent and the nucleic acid protons are controlled by selecting specific chemical shift combinations of a coupled 1H-15N spin pair. This selective control effectively leads to a pseudo-3D version of HSQC-NOESY, but with cross-peaks enhanced by ∼2-5× as compared with conventional 2D NOESY counterparts. The enhanced signal sensitivity as well as access to both 15N-1H and 1H-1H NOESY dimensions can greatly facilitate RNA assignments and secondary structure determinations, as demonstrated here with the analysis of genome fragments derived from the SARS-CoV-2 virus.


Subject(s)
Magnetic Phenomena , Magnetic Resonance Spectroscopy , RNA, Viral/chemistry , SARS-CoV-2/genetics , Temperature
SELECTION OF CITATIONS
SEARCH DETAIL