Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Biosens Bioelectron ; 185: 113177, 2021 Aug 01.
Article in English | MEDLINE | ID: covidwho-1206999


Rapid diagnosis and case isolation are pivotal to controlling the current pandemic of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). In this study, a label-free DNA capacitive biosensor for the detection of SARS-CoV-2 that demonstrates real-time, low-cost, and high-throughput screening of nucleic acid samples is presented. Our novel biosensor composed of the interdigitated platinum/titanium electrodes on the glass substrate can detect the hybridization of analyte DNA with probe DNA. The hybridization signals of specific DNA sequences were verified through exhaustive physicochemical analytical techniques such as Fourier transform infrared (FT-IR) spectrometry, contact-angle analysis, and capacitance-frequency measurements. For a single-step hybridized reaction, the fabricated kit exhibited significant sensitivity (capacitance change, ΔC = ~2 nF) in detecting the conserved region of the SARS-CoV-2 RNA-dependent RNA polymerase (RdRp) gene with high sensitivity of 0.843 nF/nM. In addition to capacitive measurements, this selective detection was confirmed by the fluorescence image and intensity from a SARS-CoV-2 gene labeled with a fluorescent dye. We also demonstrated that the kits are recyclable by surface ozone treatment using UV irradiation. Thus, these kits could potentially be applied to various types of label-free DNA, thereby acting as rapid, cost-effective biosensors for several diseases.

Biosensing Techniques , COVID-19 , DNA , Humans , Point-of-Care Systems , RNA, Viral , SARS-CoV-2 , Sensitivity and Specificity , Spectroscopy, Fourier Transform Infrared
J Am Med Inform Assoc ; 27(11): 1721-1726, 2020 11 01.
Article in English | MEDLINE | ID: covidwho-1024117


Global pandemics call for large and diverse healthcare data to study various risk factors, treatment options, and disease progression patterns. Despite the enormous efforts of many large data consortium initiatives, scientific community still lacks a secure and privacy-preserving infrastructure to support auditable data sharing and facilitate automated and legally compliant federated analysis on an international scale. Existing health informatics systems do not incorporate the latest progress in modern security and federated machine learning algorithms, which are poised to offer solutions. An international group of passionate researchers came together with a joint mission to solve the problem with our finest models and tools. The SCOR Consortium has developed a ready-to-deploy secure infrastructure using world-class privacy and security technologies to reconcile the privacy/utility conflicts. We hope our effort will make a change and accelerate research in future pandemics with broad and diverse samples on an international scale.

Biomedical Research , Computer Security , Coronavirus Infections , Information Dissemination , Pandemics , Pneumonia, Viral , Privacy , COVID-19 , Humans , Information Dissemination/ethics , Internationality , Machine Learning