Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
1.
ACS Chem Biol ; 2022 Apr 12.
Article in English | MEDLINE | ID: covidwho-1783934

ABSTRACT

Vaccine scaffolds and carrier proteins increase the immunogenicity of subunit vaccines. Here, we developed, characterized, and demonstrated the efficacy of a novel microparticle vaccine scaffold comprised of bacterial peptidoglycan (PGN), isolated as an entire sacculi. The PGN microparticles contain bio-orthogonal chemical handles allowing for site-specific attachment of immunogens. We first evaluated the purification, integrity, and immunogenicity of PGN microparticles derived from a variety of bacterial species. We then optimized PGN microparticle modification conditions; Staphylococcus aureus PGN microparticles containing azido-d-alanine yielded robust conjugation to immunogens. We then demonstrated that this vaccine scaffold elicits comparable immunostimulation to the conventional carrier protein, keyhole limpet hemocyanin (KLH). We further modified the S. aureus PGN microparticle to contain the SARS-CoV-2 receptor-binding domain (RBD)─this conjugate vaccine elicited neutralizing antibody titers comparable to those elicited by the KLH-conjugated RBD. Collectively, these findings suggest that chemically modified bacterial PGN microparticles are a conjugatable and biodegradable microparticle scaffold capable of eliciting a robust immune response toward an antigen of interest.

2.
Non-conventional in English | [Unspecified Source], Grey literature | ID: grc-750507

ABSTRACT

During virus infection B cells are critical for the production of antibodies and protective immunity. Here we show that the human B cell compartment in patients with diagnostically confirmed SARS-CoV-2 and clinical COVID-19 is rapidly altered with the early recruitment of B cells expressing a limited subset of IGHV genes, progressing to a highly polyclonal response of B cells with broader IGHV gene usage and extensive class switching to IgG and IgA subclasses with limited somatic hypermutation in the initial weeks of infection. We identify extensive convergence of antibody sequences across SARS-CoV-2 patients, highlighting stereotyped naive responses to this virus. Notably, sequence-based detection in COVID-19 patients of convergent B cell clonotypes previously reported in SARS-CoV infection predicts the presence of SARS-CoV/SARS-CoV-2 cross-reactive antibody titers specific for the receptor-binding domain. These findings offer molecular insights into shared features of human B cell responses to SARS-CoV-2 and other zoonotic spillover coronaviruses.

3.
Adv Mater ; 33(51): e2104362, 2021 Dec.
Article in English | MEDLINE | ID: covidwho-1469404

ABSTRACT

The development of effective vaccines that can be rapidly manufactured and distributed worldwide is necessary to mitigate the devastating health and economic impacts of pandemics like COVID-19. The receptor-binding domain (RBD) of the SARS-CoV-2 spike protein, which mediates host cell entry of the virus, is an appealing antigen for subunit vaccines because it is efficient to manufacture, highly stable, and a target for neutralizing antibodies. Unfortunately, RBD is poorly immunogenic. While most subunit vaccines are commonly formulated with adjuvants to enhance their immunogenicity, clinically-relevant adjuvants Alum, AddaVax, and CpG/Alum are found unable to elicit neutralizing responses following a prime-boost immunization. Here, it has been shown that sustained delivery of an RBD subunit vaccine comprising CpG/Alum adjuvant in an injectable polymer-nanoparticle (PNP) hydrogel elicited potent anti-RBD and anti-spike antibody titers, providing broader protection against SARS-CoV-2 variants of concern compared to bolus administration of the same vaccine and vaccines comprising other clinically-relevant adjuvant systems. Notably, a SARS-CoV-2 spike-pseudotyped lentivirus neutralization assay revealed that hydrogel-based vaccines elicited potent neutralizing responses when bolus vaccines did not. Together, these results suggest that slow delivery of RBD subunit vaccines with PNP hydrogels can significantly enhance the immunogenicity of RBD and induce neutralizing humoral immunity.


Subject(s)
Antibodies, Neutralizing/immunology , Hydrogels/chemistry , Spike Glycoprotein, Coronavirus/immunology , Vaccines, Subunit/immunology , Adjuvants, Immunologic/chemistry , Animals , Antibodies, Neutralizing/blood , Antibodies, Viral/blood , Antibodies, Viral/immunology , COVID-19/prevention & control , COVID-19/virology , CpG Islands/genetics , Female , Humans , Immunity, Humoral , Mice , Mice, Inbred C57BL , Nanoparticles/chemistry , Polymers/chemistry , Protein Domains/immunology , SARS-CoV-2/chemistry , SARS-CoV-2/immunology , SARS-CoV-2/isolation & purification , SARS-CoV-2/metabolism , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/isolation & purification , Vaccines, Subunit/chemistry , Vaccines, Subunit/metabolism
4.
Nat Commun ; 12(1): 5417, 2021 09 14.
Article in English | MEDLINE | ID: covidwho-1410404

ABSTRACT

COVID-19 is associated with a wide range of clinical manifestations, including autoimmune features and autoantibody production. Here we develop three protein arrays to measure IgG autoantibodies associated with connective tissue diseases, anti-cytokine antibodies, and anti-viral antibody responses in serum from 147 hospitalized COVID-19 patients. Autoantibodies are identified in approximately 50% of patients but in less than 15% of healthy controls. When present, autoantibodies largely target autoantigens associated with rare disorders such as myositis, systemic sclerosis and overlap syndromes. A subset of autoantibodies targeting traditional autoantigens or cytokines develop de novo following SARS-CoV-2 infection. Autoantibodies track with longitudinal development of IgG antibodies recognizing SARS-CoV-2 structural proteins and a subset of non-structural proteins, but not proteins from influenza, seasonal coronaviruses or other pathogenic viruses. We conclude that SARS-CoV-2 causes development of new-onset IgG autoantibodies in a significant proportion of hospitalized COVID-19 patients and are positively correlated with immune responses to SARS-CoV-2 proteins.


Subject(s)
Autoantibodies/immunology , COVID-19/immunology , Immunoglobulin G/immunology , SARS-CoV-2/immunology , Aged , Antibodies, Antinuclear/blood , Antibodies, Antinuclear/immunology , Antibodies, Viral/blood , Antibodies, Viral/immunology , Autoantibodies/blood , Autoantigens/immunology , Connective Tissue Diseases/immunology , Cytokines/immunology , Female , Hospitalization , Humans , Immunoglobulin G/blood , Male , Middle Aged , SARS-CoV-2/pathogenicity , Viral Proteins/immunology
6.
Journal of Physics: Conference Series ; 1988(1), 2021.
Article in English | ProQuest Central | ID: covidwho-1360316

ABSTRACT

We propose a mathematical model to investigate the early outbreak of COVID-19 in Malaysia. The model emphasizes the role of the government’s Movement Control Orders (MCOs) as population-wide lockdown measures and the potential benefit of mass testing on disease spread. We fit this model to the reported active COVID-19 cases to estimate model parameters. We also assume transmission rates change with respect to stages of MCOs and compare the differences in rates to assess the effectiveness of different levels of MCO restrictions. The estimated parameters match the observed data well, and our results suggest a slowing of the trajectory of COVID-19 outbreak in the country, indicating that the series of MCOs taken to counter COVID-19 transmission are having a significant positive effect.

8.
Protein Sci ; 30(4): 716-727, 2021 04.
Article in English | MEDLINE | ID: covidwho-1080719

ABSTRACT

Infection with SARS-CoV-2 elicits robust antibody responses in some patients, with a majority of the response directed at the receptor binding domain (RBD) of the spike surface glycoprotein. Remarkably, many patient-derived antibodies that potently inhibit viral infection harbor few to no mutations from the germline, suggesting that naïve antibody libraries are a viable means for discovery of novel SARS-CoV-2 neutralizing antibodies. Here, we used a yeast surface-display library of human naïve antibodies to isolate and characterize three novel neutralizing antibodies that target the RBD: one that blocks interaction with angiotensin-converting enzyme 2 (ACE2), the human receptor for SARS-CoV-2, and two that target other epitopes on the RBD. These three antibodies neutralized SARS-CoV-2 spike-pseudotyped lentivirus with IC50 values as low as 60 ng/ml in vitro. Using a biolayer interferometry-based binding competition assay, we determined that these antibodies have distinct but overlapping epitopes with antibodies elicited during natural COVID-19 infection. Taken together, these analyses highlight how in vitro selection of naïve antibodies can mimic the humoral response in vivo, yielding neutralizing antibodies and various epitopes that can be effectively targeted on the SARS-CoV-2 RBD.


Subject(s)
Angiotensin-Converting Enzyme 2/metabolism , Antibodies, Neutralizing/metabolism , COVID-19/metabolism , SARS-CoV-2/physiology , Spike Glycoprotein, Coronavirus/metabolism , Antibodies, Neutralizing/chemistry , Binding Sites , Epitopes/chemistry , Epitopes/metabolism , Humans , Molecular Docking Simulation , Protein Binding , Protein Interaction Domains and Motifs , Spike Glycoprotein, Coronavirus/chemistry
9.
ACS Cent Sci ; 7(1): 183-199, 2021 Jan 27.
Article in English | MEDLINE | ID: covidwho-1052089

ABSTRACT

The development of a safe and effective SARS-CoV-2 vaccine is a public health priority. We designed subunit vaccine candidates using self-assembling ferritin nanoparticles displaying one of two multimerized SARS-CoV-2 spikes: full-length ectodomain (S-Fer) or a C-terminal 70 amino-acid deletion (SΔC-Fer). Ferritin is an attractive nanoparticle platform for production of vaccines, and ferritin-based vaccines have been investigated in humans in two separate clinical trials. We confirmed proper folding and antigenicity of spike on the surface of ferritin by cryo-EM and binding to conformation-specific monoclonal antibodies. After a single immunization of mice with either of the two spike ferritin particles, a lentiviral SARS-CoV-2 pseudovirus assay revealed mean neutralizing antibody titers at least 2-fold greater than those in convalescent plasma from COVID-19 patients. Additionally, a single dose of SΔC-Fer elicited significantly higher neutralizing responses as compared to immunization with the spike receptor binding domain (RBD) monomer or spike ectodomain trimer alone. After a second dose, mice immunized with SΔC-Fer exhibited higher neutralizing titers than all other groups. Taken together, these results demonstrate that multivalent presentation of SARS-CoV-2 spike on ferritin can notably enhance elicitation of neutralizing antibodies, thus constituting a viable strategy for single-dose vaccination against COVID-19.

10.
Nat Med ; 27(1): 125-135, 2021 01.
Article in English | MEDLINE | ID: covidwho-1023963

ABSTRACT

Most of what we know about adaptive immunity has come from inbred mouse studies, using methods that are often difficult or impossible to confirm in humans. In addition, vaccine responses in mice are often poorly predictive of responses to those same vaccines in humans. Here we use human tonsils, readily available lymphoid organs, to develop a functional organotypic system that recapitulates key germinal center features in vitro, including the production of antigen-specific antibodies, somatic hypermutation and affinity maturation, plasmablast differentiation and class-switch recombination. We use this system to define the essential cellular components necessary to produce an influenza vaccine response. We also show that it can be used to evaluate humoral immune responses to two priming antigens, rabies vaccine and an adenovirus-based severe acute respiratory syndrome coronavirus 2 vaccine, and to assess the effects of different adjuvants. This system should prove useful for studying critical mechanisms underlying adaptive immunity in much greater depth than previously possible and to rapidly test vaccine candidates and adjuvants in an entirely human system.


Subject(s)
Influenza Vaccines/immunology , Palatine Tonsil/immunology , Adjuvants, Immunologic , B-Lymphocytes/cytology , B-Lymphocytes/immunology , COVID-19 Vaccines/immunology , Germinal Center/cytology , Hemagglutinin Glycoproteins, Influenza Virus , Humans , In Vitro Techniques , Lymphoid Tissue/immunology , Measles-Mumps-Rubella Vaccine/immunology , Organoids/cytology , Organoids/immunology , Rabies Vaccines/immunology , T-Lymphocytes/immunology
12.
Sci Immunol ; 5(54)2020 12 07.
Article in English | MEDLINE | ID: covidwho-963892

ABSTRACT

SARS-CoV-2-specific antibodies, particularly those preventing viral spike receptor binding domain (RBD) interaction with host angiotensin-converting enzyme 2 (ACE2) receptor, can neutralize the virus. It is, however, unknown which features of the serological response may affect clinical outcomes of COVID-19 patients. We analyzed 983 longitudinal plasma samples from 79 hospitalized COVID-19 patients and 175 SARS-CoV-2-infected outpatients and asymptomatic individuals. Within this cohort, 25 patients died of their illness. Higher ratios of IgG antibodies targeting S1 or RBD domains of spike compared to nucleocapsid antigen were seen in outpatients who had mild illness versus severely ill patients. Plasma antibody increases correlated with decreases in viral RNAemia, but antibody responses in acute illness were insufficient to predict inpatient outcomes. Pseudovirus neutralization assays and a scalable ELISA measuring antibodies blocking RBD-ACE2 interaction were well correlated with patient IgG titers to RBD. Outpatient and asymptomatic individuals' SARS-CoV-2 antibodies, including IgG, progressively decreased during observation up to five months post-infection.


Subject(s)
Antibodies, Viral/immunology , COVID-19/immunology , Severity of Illness Index , Adult , Aged , Aged, 80 and over , Angiotensin-Converting Enzyme 2/blood , Angiotensin-Converting Enzyme 2/genetics , Angiotensin-Converting Enzyme 2/immunology , Antibodies, Neutralizing/blood , Antibodies, Neutralizing/immunology , Antibodies, Viral/blood , COVID-19/blood , COVID-19/genetics , Enzyme-Linked Immunosorbent Assay , Female , Humans , Male , Middle Aged , Real-Time Polymerase Chain Reaction , SARS-CoV-2/genetics , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/blood , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/immunology
13.
Res Sq ; 2020 May 06.
Article in English | MEDLINE | ID: covidwho-829290

ABSTRACT

During virus infection B cells are critical for the production of antibodies and protective immunity. Establishment of a diverse antibody repertoire occurs by rearrangement of germline DNA at the immunoglobulin heavy and light chain loci to encode the membrane-bound form of antibodies, the B cell antigen receptor. Little is known about the B cells and antigen receptors stimulated by the novel human coronavirus SARS-CoV-2. Here we show that the human B cell compartment in patients with diagnostically confirmed SARS-CoV-2 and clinical COVID-19 is rapidly altered with the early recruitment of B cells expressing a limited subset of V genes, and extensive activation of IgG and IgA subclasses without significant somatic mutation. We detect expansion of B cell clones as well as convergent antibodies with highly similar sequences across SARS-CoV-2 patients, highlighting stereotyped naïve responses to this virus. A shared convergent B cell clonotype in SARS-CoV-2 infected patients was previously seen in patients with SARS. These findings offer molecular insights into shared features of human B cell responses to SARS-CoV-2 and other zoonotic spillover coronaviruses.

14.
Allergy ; 76(3): 853-865, 2021 03.
Article in English | MEDLINE | ID: covidwho-804258

ABSTRACT

BACKGROUND: Serological immunoassays that can identify protective immunity against SARS-CoV-2 are needed to adapt quarantine measures, assess vaccination responses, and evaluate donor plasma. To date, however, the utility of such immunoassays remains unclear. In a mixed-design evaluation study, we compared the diagnostic accuracy of serological immunoassays that are based on various SARS-CoV-2 proteins and assessed the neutralizing activity of antibodies in patient sera. METHODS: Consecutive patients admitted with confirmed SARS-CoV-2 infection were prospectively followed alongside medical staff and biobank samples from winter 2018/2019. An in-house enzyme-linked immunosorbent assay utilizing recombinant receptor-binding domain (RBD) of the SARS-CoV-2 spike protein was developed and compared to three commercially available enzyme-linked immunosorbent assays (ELISAs) targeting the nucleoprotein (N), the S1 domain of the spike protein (S1), and a lateral flow immunoassay (LFI) based on full-length spike protein. Neutralization assays with live SARS-CoV-2 were performed. RESULTS: One thousand four hundred and seventy-seven individuals were included comprising 112 SARS-CoV-2 positives (defined as a positive real-time PCR result; prevalence 7.6%). IgG seroconversion occurred between day 0 and day 21. While the ELISAs showed sensitivities of 88.4% for RBD, 89.3% for S1, and 72.9% for N protein, the specificity was above 94% for all tests. Out of 54 SARS-CoV-2 positive individuals, 96.3% showed full neutralization of live SARS-CoV-2 at serum dilutions ≥ 1:16, while none of the 6 SARS-CoV-2-negative sera revealed neutralizing activity. CONCLUSIONS: ELISAs targeting RBD and S1 protein of SARS-CoV-2 are promising immunoassays which shall be further evaluated in studies verifying diagnostic accuracy and protective immunity against SARS-CoV-2.


Subject(s)
Antibodies, Viral/blood , COVID-19 Serological Testing/methods , SARS-CoV-2/immunology , Adult , Aged , Aged, 80 and over , Enzyme-Linked Immunosorbent Assay , Female , Humans , Male , Middle Aged , Prospective Studies
17.
Cell Host Microbe ; 28(4): 516-525.e5, 2020 10 07.
Article in English | MEDLINE | ID: covidwho-743914

ABSTRACT

B cells are critical for the production of antibodies and protective immunity to viruses. Here we show that patients infected with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) who develop coronavirus disease 2019 (COVID-19) display early recruitment of B cells expressing a limited subset of IGHV genes, progressing to a highly polyclonal response of B cells with broader IGHV gene usage and extensive class switching to IgG and IgA subclasses with limited somatic hypermutation in the initial weeks of infection. We identify convergence of antibody sequences across SARS-CoV-2-infected patients, highlighting stereotyped naive responses to this virus. Notably, sequence-based detection in COVID-19 patients of convergent B cell clonotypes previously reported in SARS-CoV infection predicts the presence of SARS-CoV/SARS-CoV-2 cross-reactive antibody titers specific for the receptor-binding domain. These findings offer molecular insights into shared features of human B cell responses to SARS-CoV-2 and SARS-CoV.


Subject(s)
Antibodies, Viral/immunology , B-Lymphocytes/immunology , Betacoronavirus/immunology , Coronavirus Infections/immunology , Coronavirus Infections/virology , Pneumonia, Viral/immunology , Pneumonia, Viral/virology , Adult , Aged , Aged, 80 and over , Antibodies, Viral/blood , Antibodies, Viral/genetics , Antibody Formation , Betacoronavirus/genetics , COVID-19 , Female , HEK293 Cells , Humans , Immunogenetics , Immunoglobulin A/genetics , Immunoglobulin A/immunology , Immunoglobulin G/genetics , Immunoglobulin G/immunology , Male , Middle Aged , Pandemics , SARS-CoV-2 , Sequence Analysis , Spike Glycoprotein, Coronavirus/immunology
SELECTION OF CITATIONS
SEARCH DETAIL