Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 25
Filter
1.
Nat Commun ; 13(1): 6025, 2022 Oct 12.
Article in English | MEDLINE | ID: covidwho-2062212

ABSTRACT

Infection with SARS-CoV-2 variant Omicron is considered to be less severe than infection with variant Delta, with rarer occurrence of severe disease requiring intensive care. Little information is available on comorbid factors, clinical conditions and specific viral mutational patterns associated with the severity of variant Omicron infection. In this multicenter prospective cohort study, patients consecutively admitted for severe COVID-19 in 20 intensive care units in France between December 7th 2021 and May 1st 2022 were included. Among 259 patients, we show that the clinical phenotype of patients infected with variant Omicron (n = 148) is different from that in those infected with variant Delta (n = 111). We observe no significant relationship between Delta and Omicron variant lineages/sublineages and 28-day mortality (adjusted odds ratio [95% confidence interval] = 0.68 [0.35-1.32]; p = 0.253). Among Omicron-infected patients, 43.2% are immunocompromised, most of whom have received two doses of vaccine or more (85.9%) but display a poor humoral response to vaccination. The mortality rate of immunocompromised patients infected with variant Omicron is significantly higher than that of non-immunocompromised patients (46.9% vs 26.2%; p = 0.009). In patients infected with variant Omicron, there is no association between specific sublineages (BA.1/BA.1.1 (n = 109) and BA.2 (n = 21)) or any viral genome polymorphisms/mutational profile and 28-day mortality.


Subject(s)
COVID-19 , SARS-CoV-2 , Critical Illness , Humans , Phenotype , Prospective Studies , SARS-CoV-2/genetics
2.
Baruch, Joaquin, Rojek, Amanda, Kartsonaki, Christiana, Vijayaraghavan, Bharath K. T.; Gonçalves, Bronner P.; Pritchard, Mark G.; Merson, Laura, Dunning, Jake, Hall, Matthew, Sigfrid, Louise, Citarella, Barbara W.; Murthy, Srinivas, Yeabah, Trokon O.; Olliaro, Piero, Abbas, Ali, Abdukahil, Sheryl Ann, Abdulkadir, Nurul Najmee, Abe, Ryuzo, Abel, Laurent, Absil, Lara, Acharya, Subhash, Acker, Andrew, Adam, Elisabeth, Adrião, Diana, Al Ageel, Saleh, Ahmed, Shakeel, Ainscough, Kate, Airlangga, Eka, Aisa, Tharwat, Hssain, Ali Ait, Tamlihat, Younes Ait, Akimoto, Takako, Akmal, Ernita, Al Qasim, Eman, Alalqam, Razi, Alberti, Angela, Al‐dabbous, Tala, Alegesan, Senthilkumar, Alegre, Cynthia, Alessi, Marta, Alex, Beatrice, Alexandre, Kévin, Al‐Fares, Abdulrahman, Alfoudri, Huda, Ali, Imran, Ali, Adam, Shah, Naseem Ali, Alidjnou, Kazali Enagnon, Aliudin, Jeffrey, Alkhafajee, Qabas, Allavena, Clotilde, Allou, Nathalie, Altaf, Aneela, Alves, João, Alves, Rita, Alves, João Melo, Amaral, Maria, Amira, Nur, Ampaw, Phoebe, Andini, Roberto, Andréjak, Claire, Angheben, Andrea, Angoulvant, François, Ansart, Séverine, Anthonidass, Sivanesen, Antonelli, Massimo, de Brito, Carlos Alexandre Antunes, Apriyana, Ardiyan, Arabi, Yaseen, Aragao, Irene, Araujo, Carolline, Arcadipane, Antonio, Archambault, Patrick, Arenz, Lukas, Arlet, Jean‐Benoît, Arora, Lovkesh, Arora, Rakesh, Artaud‐Macari, Elise, Aryal, Diptesh, Asensio, Angel, Ashraf, Muhammad, Asif, Namra, Asim, Mohammad, Assie, Jean Baptiste, Asyraf, Amirul, Atique, Anika, Attanyake, A. M. Udara Lakshan, Auchabie, Johann, Aumaitre, Hugues, Auvet, Adrien, Axelsen, Eyvind W.; Azemar, Laurène, Azoulay, Cecile, Bach, Benjamin, Bachelet, Delphine, Badr, Claudine, Bævre‐Jensen, Roar, Baig, Nadia, Baillie, J. Kenneth, Baird, J. Kevin, Bak, Erica, Bakakos, Agamemnon, Bakar, Nazreen Abu, Bal, Andriy, Balakrishnan, Mohanaprasanth, Balan, Valeria, Bani‐Sadr, Firouzé, Barbalho, Renata, Barbosa, Nicholas Yuri, Barclay, Wendy S.; Barnett, Saef Umar, Barnikel, Michaela, Barrasa, Helena, Barrelet, Audrey, Barrigoto, Cleide, Bartoli, Marie, Baruch, Joaquín, Bashir, Mustehan, Basmaci, Romain, Basri, Muhammad Fadhli Hassin, Battaglini, Denise, Bauer, Jules, Rincon, Diego Fernando Bautista, Dow, Denisse Bazan, Beane, Abigail, Bedossa, Alexandra, Bee, Ker Hong, Begum, Husna, Behilill, Sylvie, Beishuizen, Albertus, Beljantsev, Aleksandr, Bellemare, David, Beltrame, Anna, Beltrão, Beatriz Amorim, Beluze, Marine, Benech, Nicolas, Benjiman, Lionel Eric, Benkerrou, Dehbia, Bennett, Suzanne, Bento, Luís, Berdal, Jan‐Erik, Bergeaud, Delphine, Bergin, Hazel, Sobrino, José Luis Bernal, Bertoli, Giulia, Bertolino, Lorenzo, Bessis, Simon, Bevilcaqua, Sybille, Bezulier, Karine, Bhatt, Amar, Bhavsar, Krishna, Bianco, Claudia, Bidin, Farah Nadiah, Singh, Moirangthem Bikram, Humaid, Felwa Bin, Kamarudin, Mohd Nazlin Bin, Bissuel, François, Bitker, Laurent, Bitton, Jonathan, Blanco‐Schweizer, Pablo, Blier, Catherine, Bloos, Frank, Blot, Mathieu, Boccia, Filomena, Bodenes, Laetitia, Bogaarts, Alice, Bogaert, Debby, Boivin, Anne‐Hélène, Bolze, Pierre‐Adrien, Bompart, François, Bonfasius, Aurelius, Borges, Diogo, Borie, Raphaël, Bosse, Hans Martin, Botelho‐Nevers, Elisabeth, Bouadma, Lila, Bouchaud, Olivier, Bouchez, Sabelline, Bouhmani, Dounia, Bouhour, Damien, Bouiller, Kévin, Bouillet, Laurence, Bouisse, Camile, Boureau, Anne‐Sophie, Bourke, John, Bouscambert, Maude, Bousquet, Aurore, Bouziotis, Jason, Boxma, Bianca, Boyer‐Besseyre, Marielle, Boylan, Maria, Bozza, Fernando Augusto, Braconnier, Axelle, Braga, Cynthia, Brandenburger, Timo, Monteiro, Filipa Brás, Brazzi, Luca, Breen, Patrick, Breen, Dorothy, Breen, Patrick, Brickell, Kathy, Browne, Shaunagh, Browne, Alex, Brozzi, Nicolas, Brunvoll, Sonja Hjellegjerde, Brusse‐Keizer, Marjolein, Buchtele, Nina, Buesaquillo, Christian, Bugaeva, Polina, Buisson, Marielle, Buonsenso, Danilo, Burhan, Erlina, Burrell, Aidan, Bustos, Ingrid G.; Butnaru, Denis, Cabie, André, Cabral, Susana, Caceres, Eder, Cadoz, Cyril, Calligy, Kate, Calvache, Jose Andres, Camões, João, Campana, Valentine, Campbell, Paul, Campisi, Josie, Canepa, Cecilia, Cantero, Mireia, Caraux‐Paz, Pauline, Cárcel, Sheila, Cardellino, Chiara Simona, Cardoso, Sofia, Cardoso, Filipe, Cardoso, Filipa, Cardoso, Nelson, Carelli, Simone, Carlier, Nicolas, Carmoi, Thierry, Carney, Gayle, Carqueja, Inês, Carret, Marie‐Christine, Carrier, François Martin, Carroll, Ida, Carson, Gail, Casanova, Maire‐Laure, Cascão, Mariana, Casey, Siobhan, Casimiro, José, Cassandra, Bailey, Castañeda, Silvia, Castanheira, Nidyanara, Castor‐Alexandre, Guylaine, Castrillón, Henry, Castro, Ivo, Catarino, Ana, Catherine, François‐Xavier, Cattaneo, Paolo, Cavalin, Roberta, Cavalli, Giulio Giovanni, Cavayas, Alexandros, Ceccato, Adrian, Cervantes‐Gonzalez, Minerva, Chair, Anissa, Chakveatze, Catherine, Chan, Adrienne, Chand, Meera, Auger, Christelle Chantalat, Chapplain, Jean‐Marc, Chas, Julie, Chatterjee, Allegra, Chaudry, Mobin, Iñiguez, Jonathan Samuel Chávez, Chen, Anjellica, Chen, Yih‐Sharng, Cheng, Matthew Pellan, Cheret, Antoine, Chiarabini, Thibault, Chica, Julian, Chidambaram, Suresh Kumar, Tho, Leong Chin, Chirouze, Catherine, Chiumello, Davide, Cho, Sung‐Min, Cholley, Bernard, Chopin, Marie‐Charlotte, Chow, Ting Soo, Chow, Yock Ping, Chua, Jonathan, Chua, Hiu Jian, Cidade, Jose Pedro, Herreros, José Miguel Cisneros, Citarella, Barbara Wanjiru, Ciullo, Anna, Clarke, Jennifer, Clarke, Emma, Granado, Rolando Claure‐Del, Clohisey, Sara, Cobb, Perren J.; Codan, Cassidy, Cody, Caitriona, Coelho, Alexandra, Coles, Megan, Colin, Gwenhaël, Collins, Michael, Colombo, Sebastiano Maria, Combs, Pamela, Connor, Marie, Conrad, Anne, Contreras, Sofía, Conway, Elaine, Cooke, Graham S.; Copland, Mary, Cordel, Hugues, Corley, Amanda, Cornelis, Sabine, Cornet, Alexander Daniel, Corpuz, Arianne Joy, Cortegiani, Andrea, Corvaisier, Grégory, Costigan, Emma, Couffignal, Camille, Couffin‐Cadiergues, Sandrine, Courtois, Roxane, Cousse, Stéphanie, Cregan, Rachel, Croonen, Sabine, Crowl, Gloria, Crump, Jonathan, Cruz, Claudina, Bermúdez, Juan Luis Cruz, Rojo, Jaime Cruz, Csete, Marc, Cullen, Ailbhe, Cummings, Matthew, Curley, Gerard, Curlier, Elodie, Curran, Colleen, Custodio, Paula, da Silva Filipe, Ana, Da Silveira, Charlene, Dabaliz, Al‐Awwab, Dagens, Andrew, Dahl, John Arne, Dahly, Darren, Dalton, Heidi, Dalton, Jo, Daly, Seamus, Daneman, Nick, Daniel, Corinne, Dankwa, Emmanuelle A.; Dantas, Jorge, D'Aragon, Frédérick, de Loughry, Gillian, de Mendoza, Diego, De Montmollin, Etienne, de Oliveira França, Rafael Freitas, de Pinho Oliveira, Ana Isabel, De Rosa, Rosanna, De Rose, Cristina, de Silva, Thushan, de Vries, Peter, Deacon, Jillian, Dean, David, Debard, Alexa, Debray, Marie‐Pierre, DeCastro, Nathalie, Dechert, William, Deconninck, Lauren, Decours, Romain, Defous, Eve, Delacroix, Isabelle, Delaveuve, Eric, Delavigne, Karen, Delfos, Nathalie M.; Deligiannis, Ionna, Dell'Amore, Andrea, Delmas, Christelle, Delobel, Pierre, Delsing, Corine, Demonchy, Elisa, Denis, Emmanuelle, Deplanque, Dominique, Depuydt, Pieter, Desai, Mehul, Descamps, Diane, Desvallées, Mathilde, Dewayanti, Santi, Dhanger, Pathik, Diallo, Alpha, Diamantis, Sylvain, Dias, André, Diaz, Juan Jose, Diaz, Priscila, Diaz, Rodrigo, Didier, Kévin, Diehl, Jean‐Luc, Dieperink, Wim, Dimet, Jérôme, Dinot, Vincent, Diop, Fara, Diouf, Alphonsine, Dishon, Yael, Djossou, Félix, Docherty, Annemarie B.; Doherty, Helen, Dondorp, Arjen M.; Donnelly, Maria, Donnelly, Christl A.; Donohue, Sean, Donohue, Yoann, Donohue, Chloe, Doran, Peter, Dorival, Céline, D'Ortenzio, Eric, Douglas, James Joshua, Douma, Renee, Dournon, Nathalie, Downer, Triona, Downey, Joanne, Downing, Mark, Drake, Tom, Driscoll, Aoife, Dryden, Murray, Fonseca, Claudio Duarte, Dubee, Vincent, Dubos, François, Ducancelle, Alexandre, Duculan, Toni, Dudman, Susanne, Duggal, Abhijit, Dunand, Paul, Dunning, Jake, Duplaix, Mathilde, Durante‐Mangoni, Emanuele, Durham, Lucian, Dussol, Bertrand, Duthoit, Juliette, Duval, Xavier, Dyrhol‐Riise, Anne Margarita, Ean, Sim Choon, Echeverria‐Villalobos, Marco, Egan, Siobhan, Eggesbø, Linn Margrete, Eira, Carla, El Sanharawi, Mohammed, Elapavaluru, Subbarao, Elharrar, Brigitte, Ellerbroek, Jacobien, Ellingjord‐Dale, Merete, Eloy, Philippine, Elshazly, Tarek, Elyazar, Iqbal, Enderle, Isabelle, Endo, Tomoyuki, Eng, Chan Chee, Engelmann, Ilka, Enouf, Vincent, Epaulard, Olivier, Escher, Martina, Esperatti, Mariano, Esperou, Hélène, Esposito‐Farese, Marina, Estevão, João, Etienne, Manuel, Ettalhaoui, Nadia, Everding, Anna Greti, Evers, Mirjam, Fabre, Marc, Fabre, Isabelle, Faheem, Amna, Fahy, Arabella, Fairfield, Cameron J.; Fakar, Zul, Fareed, Komal, Faria, Pedro, Farooq, Ahmed, Fateena, Hanan, Fatoni, Arie Zainul, Faure, Karine, Favory, Raphaël, Fayed, Mohamed, Feely, Niamh, Feeney, Laura, Fernandes, Jorge, Fernandes, Marília Andreia, Fernandes, Susana, Ferrand, François‐Xavier, Devouge, Eglantine Ferrand, Ferrão, Joana, Ferraz, Mário, Ferreira, Sílvia, Ferreira, Isabel, Ferreira, Benigno, Ferrer‐Roca, Ricard, Ferriere, Nicolas, Ficko, Céline, Figueiredo‐Mello, Claudia, Finlayson, William, Fiorda, Juan, Flament, Thomas, Flateau, Clara, Fletcher, Tom, Florio, Letizia Lucia, Flynn, Deirdre, Foley, Claire, Foley, Jean, Fomin, Victor, Fonseca, Tatiana, Fontela, Patricia, Forsyth, Simon, Foster, Denise, Foti, Giuseppe, Fourn, Erwan, Fowler, Robert A.; Fraher, Marianne, Franch‐Llasat, Diego, Fraser, John F.; Fraser, Christophe, Freire, Marcela Vieira, Ribeiro, Ana Freitas, Friedrich, Caren, Fry, Stéphanie, Fuentes, Nora, Fukuda, Masahiro, Argin, G.; Gaborieau, Valérie, Gaci, Rostane, Gagliardi, Massimo, Gagnard, Jean‐Charles, Gagneux‐Brunon, Amandine, Gaião, Sérgio, Skeie, Linda Gail, Gallagher, Phil, Gamble, Carrol, Gani, Yasmin, Garan, Arthur, Garcia, Rebekha, Barrio, Noelia García, Garcia‐Diaz, Julia, Garcia‐Gallo, Esteban, Garimella, Navya, Garot, Denis, Garrait, Valérie, Gauli, Basanta, Gault, Nathalie, Gavin, Aisling, Gavrylov, Anatoliy, Gaymard, Alexandre, Gebauer, Johannes, Geraud, Eva, Morlaes, Louis Gerbaud, Germano, Nuno, Ghisulal, Praveen Kumar, Ghosn, Jade, Giani, Marco, Gibson, Jess, Gigante, Tristan, Gilg, Morgane, Gilroy, Elaine, Giordano, Guillermo, Girvan, Michelle, Gissot, Valérie, Glikman, Daniel, Glybochko, Petr, Gnall, Eric, Goco, Geraldine, Goehringer, François, Goepel, Siri, Goffard, Jean‐Christophe, Goh, Jin Yi, Golob, Jonathan, Gomez, Kyle, Gómez‐Junyent, Joan, Gominet, Marie, Gonçalves, Bronner P.; Gonzalez, Alicia, Gordon, Patricia, Gorenne, Isabelle, Goubert, Laure, Goujard, Cécile, Goulenok, Tiphaine, Grable, Margarite, Graf, Jeronimo, Grandin, Edward Wilson, Granier, Pascal, Grasselli, Giacomo, Green, Christopher A.; Greene, Courtney, Greenhalf, William, Greffe, Segolène, Grieco, Domenico Luca, Griffee, Matthew, Griffiths, Fiona, Grigoras, Ioana, Groenendijk, Albert, Lordemann, Anja Grosse, Gruner, Heidi, Gu, Yusing, Guedj, Jérémie, Guego, Martin, Guellec, Dewi, Guerguerian, Anne‐Marie, Guerreiro, Daniela, Guery, Romain, Guillaumot, Anne, Guilleminault, Laurent, Guimarães de Castro, Maisa, Guimard, Thomas, Haalboom, Marieke, Haber, Daniel, Habraken, Hannah, Hachemi, Ali, Hackmann, Amy, Hadri, Nadir, Haidri, Fakhir, Hakak, Sheeba, Hall, Adam, Hall, Matthew, Halpin, Sophie, Hameed, Jawad, Hamer, Ansley, Hamers, Raph L.; Hamidfar, Rebecca, Hammarström, Bato, Hammond, Terese, Han, Lim Yuen, Haniffa, Rashan, Hao, Kok Wei, Hardwick, Hayley, Harrison, Ewen M.; Harrison, Janet, Harrison, Samuel Bernard Ekow, Hartman, Alan, Hasan, Mohd Shahnaz, Hashmi, Junaid, Hayat, Muhammad, Hayes, Ailbhe, Hays, Leanne, Heerman, Jan, Heggelund, Lars, Hendry, Ross, Hennessy, Martina, Henriquez‐Trujillo, Aquiles, Hentzien, Maxime, Hernandez‐Montfort, Jaime, Hershey, Andrew, Hesstvedt, Liv, Hidayah, Astarini, Higgins, Eibhilin, Higgins, Dawn, Higgins, Rupert, Hinchion, Rita, Hinton, Samuel, Hiraiwa, Hiroaki, Hirkani, Haider, Hitoto, Hikombo, Ho, Yi Bin, Ho, Antonia, Hoctin, Alexandre, Hoffmann, Isabelle, Hoh, Wei Han, Hoiting, Oscar, Holt, Rebecca, Holter, Jan Cato, Horby, Peter, Horcajada, Juan Pablo, Hoshino, Koji, Houas, Ikram, Hough, Catherine L.; Houltham, Stuart, Hsu, Jimmy Ming‐Yang, Hulot, Jean‐Sébastien, Huo, Stella, Hurd, Abby, Hussain, Iqbal, Ijaz, Samreen, Illes, Hajnal‐Gabriela, Imbert, Patrick, Imran, Mohammad, Sikander, Rana Imran, Imtiaz, Aftab, Inácio, Hugo, Dominguez, Carmen Infante, Ing, Yun Sii, Iosifidis, Elias, Ippolito, Mariachiara, Isgett, Sarah, Isidoro, Tiago, Ismail, Nadiah, Isnard, Margaux, Istre, Mette Stausland, Itai, Junji, Ivulich, Daniel, Jaafar, Danielle, Jaafoura, Salma, Jabot, Julien, Jackson, Clare, Jamieson, Nina, Jaquet, Pierre, Jaud‐Fischer, Coline, Jaureguiberry, Stéphane, Jaworsky, Denise, Jego, Florence, Jelani, Anilawati Mat, Jenum, Synne, Jimbo‐Sotomayor, Ruth, Joe, Ong Yiaw, Jorge García, Ruth N.; Jørgensen, Silje Bakken, Joseph, Cédric, Joseph, Mark, Joshi, Swosti, Jourdain, Mercé, Jouvet, Philippe, Jung, Hanna, Jung, Anna, Juzar, Dafsah, Kafif, Ouifiya, Kaguelidou, Florentia, Kaisbain, Neerusha, Kaleesvran, Thavamany, Kali, Sabina, Kalicinska, Alina, Kalleberg, Karl Trygve, Kalomoiri, Smaragdi, Kamaluddin, Muhammad Aisar Ayadi, Kamaruddin, Zul Amali Che, Kamarudin, Nadiah, Kamineni, Kavita, Kandamby, Darshana Hewa, Kandel, Chris, Kang, Kong Yeow, Kanwal, Darakhshan, Karpayah, Pratap, Kartsonaki, Christiana, Kasugai, Daisuke, Kataria, Anant, Katz, Kevin, Kaur, Aasmine, Kay, Christy, Keane, Hannah, Keating, Seán, Kedia, Pulak, Kelly, Claire, Kelly, Yvelynne, Kelly, Andrea, Kelly, Niamh, Kelly, Aoife, Kelly, Sadie, Kelsey, Maeve, Kennedy, Ryan, Kennon, Kalynn, Kernan, Maeve, Kerroumi, Younes, Keshav, Sharma, Khalid, Imrana, Khalid, Osama, Khalil, Antoine, Khan, Coralie, Khan, Irfan, Khan, Quratul Ain, Khanal, Sushil, Khatak, Abid, Khawaja, Amin, Kherajani, Krish, Kho, Michelle E.; Khoo, Ryan, Khoo, Denisa, Khoo, Saye, Khoso, Nasir, Kiat, Khor How, Kida, Yuri, Kiiza, Peter, Granerud, Beathe Kiland, Kildal, Anders Benjamin, Kim, Jae Burm, Kimmoun, Antoine, Kindgen‐Milles, Detlef, King, Alexander, Kitamura, Nobuya, Kjetland, Eyrun Floerecke Kjetland, Klenerman, Paul, Klont, Rob, Bekken, Gry Kloumann, Knight, Stephen R.; Kobbe, Robin, Kodippily, Chamira, Vasconcelos, Malte Kohns, Koirala, Sabin, Komatsu, Mamoru, Kosgei, Caroline, Kpangon, Arsène, Krawczyk, Karolina, Krishnan, Vinothini, Krishnan, Sudhir, Kruglova, Oksana, Kumar, Ganesh, Kumar, Deepali, Kumar, Mukesh, Vecham, Pavan Kumar, Kuriakose, Dinesh, Kurtzman, Ethan, Kutsogiannis, Demetrios, Kutsyna, Galyna, Kyriakoulis, Konstantinos, Lachatre, Marie, Lacoste, Marie, Laffey, John G.; Lagrange, Marie, Laine, Fabrice, Lairez, Olivier, Lakhey, Sanjay, Lalueza, Antonio, Lambert, Marc, Lamontagne, François, Langelot‐Richard, Marie, Langlois, Vincent, Lantang, Eka Yudha, Lanza, Marina, Laouénan, Cédric, Laribi, Samira, Lariviere, Delphine, Lasry, Stéphane, Lath, Sakshi, Latif, Naveed, Launay, Odile, Laureillard, Didier, Lavie‐Badie, Yoan, Law, Andy, Lawrence, Teresa, Lawrence, Cassie, Le, Minh, Le Bihan, Clément, Le Bris, Cyril, Le Falher, Georges, Le Fevre, Lucie, Le Hingrat, Quentin, Le Maréchal, Marion, Le Mestre, Soizic, Le Moal, Gwenaël, Le Moing, Vincent, Le Nagard, Hervé, Le Turnier, Paul, Leal, Ema, Santos, Marta Leal, Lee, Heng Gee, Lee, Biing Horng, Lee, Yi Lin, Lee, Todd C.; Lee, James, Lee, Jennifer, Lee, Su Hwan, Leeming, Gary, Lefebvre, Laurent, Lefebvre, Bénédicte, Lefèvre, Benjamin, LeGac, Sylvie, Lelievre, Jean‐Daniel, Lellouche, François, Lemaignen, Adrien, Lemee, Véronique, Lemeur, Anthony, Lemmink, Gretchen, Lene, Ha Sha, Lennon, Jenny, León, Rafael, Leone, Marc, Leone, Michela, Lepiller, Quentin, Lescure, François‐Xavier, Lesens, Olivier, Lesouhaitier, Mathieu, Lester‐Grant, Amy, Levy, Yves, Levy, Bruno, Levy‐Marchal, Claire, Lewandowska, Katarzyna, L'Her, Erwan, Bassi, Gianluigi Li, Liang, Janet, Liaquat, Ali, Liegeon, Geoffrey, Lim, Kah Chuan, Lim, Wei Shen, Lima, Chantre, Lina, Lim, Lina, Bruno, Lind, Andreas, Lingad, Maja Katherine, Lingas, Guillaume, Lion‐Daolio, Sylvie, Lissauer, Samantha, Liu, Keibun, Livrozet, Marine, Lizotte, Patricia, Loforte, Antonio, Lolong, Navy, Loon, Leong Chee, Lopes, Diogo, Lopez‐Colon, Dalia, Lopez‐Revilla, Jose W.; Loschner, Anthony L.; Loubet, Paul, Loufti, Bouchra, Louis, Guillame, Lourenco, Silvia, Lovelace‐Macon, Lara, Low, Lee Lee, Lowik, Marije, Loy, Jia Shyi, Lucet, Jean Christophe, Bermejo, Carlos Lumbreras, Luna, Carlos M.; Lungu, Olguta, Luong, Liem, Luque, Nestor, Luton, Dominique, Lwin, Nilar, Lyons, Ruth, Maasikas, Olavi, Mabiala, Oryane, Machado, Moïse, Macheda, Gabriel, Madiha, Hashmi, Maestro de la Calle, Guillermo, Mahieu, Rafael, Mahy, Sophie, Maia, Ana Raquel, Maier, Lars S.; Maillet, Mylène, Maitre, Thomas, Malfertheiner, Maximilian, Malik, Nadia, Mallon, Paddy, Maltez, Fernando, Malvy, Denis, Manda, Victoria, Mandelbrot, Laurent, Manetta, Frank, Mankikian, Julie, Manning, Edmund, Manuel, Aldric, Sant'Ana Malaque, Ceila Maria, Marino, Flávio, Marino, Daniel, Markowicz, Samuel, Maroun Eid, Charbel, Marques, Ana, Marquis, Catherine, Marsh, Brian, Marsh, Laura, Marshal, Megan, Marshall, John, Martelli, Celina Turchi, Martin, Dori‐Ann, Martin, Emily, Martin‐Blondel, Guillaume, Martin‐Loeches, Ignacio, Martinot, Martin, Martin‐Quiros, Alejandro, Martins, João, Martins, Ana, Martins, Nuno, Rego, Caroline Martins, Martucci, Gennaro, Martynenko, Olga, Marwali, Eva Miranda, Marzukie, Marsilla, Maslove, David, Mason, Sabina, Masood, Sobia, Nor, Basri Mat, Matan, Moshe, Mathew, Meghena, Mathieu, Daniel, Mattei, Mathieu, Matulevics, Romans, Maulin, Laurence, Maxwell, Michael, Maynar, Javier, Mazzoni, Thierry, Evoy, Natalie Mc, Sweeney, Lisa Mc, McArthur, Colin, McArthur, Colin, McCarthy, Anne, McCarthy, Aine, McCloskey, Colin, McConnochie, Rachael, McDermott, Sherry, McDonald, Sarah E.; McElroy, Aine, McElwee, Samuel, McEneany, Victoria, McGeer, Allison, McKay, Chris, McKeown, Johnny, McLean, Kenneth A.; McNally, Paul, McNicholas, Bairbre, McPartlan, Elaine, Meaney, Edel, Mear‐Passard, Cécile, Mechlin, Maggie, Meher, Maqsood, Mehkri, Omar, Mele, Ferruccio, Melo, Luis, Memon, Kashif, Mendes, Joao Joao, Menkiti, Ogechukwu, Menon, Kusum, Mentré, France, Mentzer, Alexander J.; Mercier, Noémie, Mercier, Emmanuelle, Merckx, Antoine, Mergeay‐Fabre, Mayka, Mergler, Blake, Merson, Laura, Mesquita, António, Meta, Roberta, Metwally, Osama, Meybeck, Agnès, Meyer, Dan, Meynert, Alison M.; Meysonnier, Vanina, Meziane, Amina, Mezidi, Mehdi, Michelanglei, Céline, Michelet, Isabelle, Mihelis, Efstathia, Mihnovit, Vladislav, Miranda‐Maldonado, Hugo, Misnan, Nor Arisah, Mohamed, Tahira Jamal, Mohamed, Nik Nur Eliza, Moin, Asma, Molina, David, Molinos, Elena, Molloy, Brenda, Mone, Mary, Monteiro, Agostinho, Montes, Claudia, Montrucchio, Giorgia, Moore, Shona C.; Moore, Sarah, Cely, Lina Morales, Moro, Lucia, Morton, Ben, Motherway, Catherine, Motos, Ana, Mouquet, Hugo, Perrot, Clara Mouton, Moyet, Julien, Mudara, Caroline, Mufti, Aisha Kalsoom, Muh, Ng Yong, Muhamad, Dzawani, Mullaert, Jimmy, Müller, Fredrik, Müller, Karl Erik, Munblit, Daniel, Muneeb, Syed, Munir, Nadeem, Munshi, Laveena, Murphy, Aisling, Murphy, Lorna, Murphy, Aisling, Murris, Marlène, Murthy, Srinivas, Musaab, Himed, Muvindi, Himasha, Muyandy, Gugapriyaa, Myrodia, Dimitra Melia, Mohd‐Hanafiah, Farah Nadia, Nagpal, Dave, Nagrebetsky, Alex, Narasimhan, Mangala, Narayanan, Nageswaran, Khan, Rashid Nasim, Nazerali‐Maitland, Alasdair, Neant, Nadège, Neb, Holger, Nekliudov, Nikita, Nelwan, Erni, Neto, Raul, Neumann, Emily, Ng, Pauline Yeung, Ng, Wing Yiu, Nghi, Anthony, Nguyen, Duc, Choileain, Orna Ni, Leathlobhair, Niamh Ni, Nichol, Alistair, Nitayavardhana, Prompak, Nonas, Stephanie, Noordin, Nurul Amani Mohd, Noret, Marion, Norharizam, Nurul Faten Izzati, Norman, Lisa, Notari, Alessandra, Noursadeghi, Mahdad, Nowicka, Karolina, Nowinski, Adam, Nseir, Saad, Nunez, Jose I.; Nurnaningsih, Nurnaningsih, Nusantara, Dwi Utomo, Nyamankolly, Elsa, Nygaard, Anders Benteson, Brien, Fionnuala O.; Callaghan, Annmarie O.; O'Callaghan, Annmarie, Occhipinti, Giovanna, Oconnor, Derbrenn, O'Donnell, Max, Ogston, Tawnya, Ogura, Takayuki, Oh, Tak‐Hyuk, O'Halloran, Sophie, O'Hearn, Katie, Ohshimo, Shinichiro, Oldakowska, Agnieszka, Oliveira, João, Oliveira, Larissa, Olliaro, Piero L.; Ong, Jee Yan, Ong, David S. Y.; Oosthuyzen, Wilna, Opavsky, Anne, Openshaw, Peter, Orakzai, Saijad, Orozco‐Chamorro, Claudia Milena, Ortoleva, Jamel, Osatnik, Javier, O'Shea, Linda, O'Sullivan, Miriam, Othman, Siti Zubaidah, Ouamara, Nadia, Ouissa, Rachida, Oziol, Eric, Pagadoy, Maïder, Pages, Justine, Palacios, Mario, Palacios, Amanda, Palmarini, Massimo, Panarello, Giovanna, Panda, Prasan Kumar, Paneru, Hem, Pang, Lai Hui, Panigada, Mauro, Pansu, Nathalie, Papadopoulos, Aurélie, Parke, Rachael, Parker, Melissa, Parra, Briseida, Pasha, Taha, Pasquier, Jérémie, Pastene, Bruno, Patauner, Fabian, Patel, Drashti, Pathmanathan, Mohan Dass, Patrão, Luís, Patricio, Patricia, Patrier, Juliette, Patterson, Lisa, Pattnaik, Rajyabardhan, Paul, Mical, Paul, Christelle, Paulos, Jorge, Paxton, William A.; Payen, Jean‐François, Peariasamy, Kalaiarasu, Jiménez, Miguel Pedrera, Peek, Giles J.; Peelman, Florent, Peiffer‐Smadja, Nathan, Peigne, Vincent, Pejkovska, Mare, Pelosi, Paolo, Peltan, Ithan D.; Pereira, Rui, Perez, Daniel, Periel, Luis, Perpoint, Thomas, Pesenti, Antonio, Pestre, Vincent, Petrou, Lenka, Petrovic, Michele, Petrov‐Sanchez, Ventzislava, Pettersen, Frank Olav, Peytavin, Gilles, Pharand, Scott, Picard, Walter, Picone, Olivier, de Piero, Maria, Pierobon, Carola, Piersma, Djura, Pimentel, Carlos, Pinto, Raquel, Pires, Catarina, Pironneau, Isabelle, Piroth, Lionel, Pitaloka, Ayodhia, Pius, Riinu, Plantier, Laurent, Png, Hon Shen, Poissy, Julien, Pokeerbux, Ryadh, Pokorska‐Spiewak, Maria, Poli, Sergio, Pollakis, Georgios, Ponscarme, Diane, Popielska, Jolanta, Porto, Diego Bastos, Post, Andra‐Maris, Postma, Douwe F.; Povoa, Pedro, Póvoas, Diana, Powis, Jeff, Prapa, Sofia, Preau, Sébastien, Prebensen, Christian, Preiser, Jean‐Charles, Prinssen, Anton, Pritchard, Mark G.; Priyadarshani, Gamage Dona Dilanthi, Proença, Lucia, Pudota, Sravya, Puéchal, Oriane, Semedi, Bambang Pujo, Pulicken, Mathew, Purcell, Gregory, Quesada, Luisa, Quinones‐Cardona, Vilmaris, González, Víctor Quirós, Quist‐Paulsen, Else, Quraishi, Mohammed, Rabaa, Maia, Rabaud, Christian, Rabindrarajan, Ebenezer, Rafael, Aldo, Rafiq, Marie, Rahardjani, Mutia, Rahman, Rozanah Abd, Rahman, Ahmad Kashfi Haji Ab, Rahutullah, Arsalan, Rainieri, Fernando, Rajahram, Giri Shan, Ramachandran, Pratheema, Ramakrishnan, Nagarajan, Ramli, Ahmad Afiq, Rammaert, Blandine, Ramos, Grazielle Viana, Rana, Asim, Rangappa, Rajavardhan, Ranjan, Ritika, Rapp, Christophe, Rashan, Aasiyah, Rashan, Thalha, Rasheed, Ghulam, Rasmin, Menaldi, Rätsep, Indrek, Rau, Cornelius, Ravi, Tharmini, Raza, Ali, Real, Andre, Rebaudet, Stanislas, Redl, Sarah, Reeve, Brenda, Rehman, Attaur, Reid, Liadain, Reikvam, Dag Henrik, Reis, Renato, Rello, Jordi, Remppis, Jonathan, Remy, Martine, Ren, Hongru, Renk, Hanna, Resseguier, Anne‐Sophie, Revest, Matthieu, Rewa, Oleksa, Reyes, Luis Felipe, Reyes, Tiago, Ribeiro, Maria Ines, Ricchiuto, Antonia, Richardson, David, Richardson, Denise, Richier, Laurent, Ridzuan, Siti Nurul Atikah Ahmad, Riera, Jordi, Rios, Ana L.; Rishu, Asgar, Rispal, Patrick, Risso, Karine, Nuñez, Maria Angelica Rivera, Rizer, Nicholas, Robba, Chiara, Roberto, André, Roberts, Stephanie, Robertson, David L.; Robineau, Olivier, Roche‐Campo, Ferran, Rodari, Paola, Rodeia, Simão, Abreu, Julia Rodriguez, Roessler, Bernhard, Roger, Pierre‐Marie, Roger, Claire, Roilides, Emmanuel, Rojek, Amanda, Romaru, Juliette, Roncon‐Albuquerque, Roberto, Roriz, Mélanie, Rosa‐Calatrava, Manuel, Rose, Michael, Rosenberger, Dorothea, Roslan, Nurul Hidayah Mohammad, Rossanese, Andrea, Rossetti, Matteo, Rossignol, Bénédicte, Rossignol, Patrick, Rousset, Stella, Roy, Carine, Roze, Benoît, Rusmawatiningtyas, Desy, Russell, Clark D.; Ryan, Maria, Ryan, Maeve, Ryckaert, Steffi, Holten, Aleksander Rygh, Saba, Isabela, Sadaf, Sairah, Sadat, Musharaf, Sahraei, Valla, Saint‐Gilles, Maximilien, Sakiyalak, Pranya, Salahuddin, Nawal, Salazar, Leonardo, Saleem, Jodat, Sales, Gabriele, Sallaberry, Stéphane, Salmon Gandonniere, Charlotte, Salvator, Hélène, Sanchez, Olivier, Sanchez‐Miralles, Angel, Sancho‐Shimizu, Vanessa, Sandhu, Gyan, Sandhu, Zulfiqar, Sandrine, Pierre‐François, Sandulescu, Oana, Santos, Marlene, Sarfo‐Mensah, Shirley, Banheiro, Bruno Sarmento, Sarmiento, Iam Claire E.; Sarton, Benjamine, Satya, Ankana, Satyapriya, Sree, Satyawati, Rumaisah, Saviciute, Egle, Savvidou, Parthena, Saw, Yen Tsen, Schaffer, Justin, Schermer, Tjard, Scherpereel, Arnaud, Schneider, Marion, Schroll, Stephan, Schwameis, Michael, Schwartz, Gary, Scott, Janet T.; Scott‐Brown, James, Sedillot, Nicholas, Seitz, Tamara, Selvanayagam, Jaganathan, Selvarajoo, Mageswari, Semaille, Caroline, Semple, Malcolm G.; Senian, Rasidah Bt, Senneville, Eric, Sequeira, Filipa, Sequeira, Tânia, Neto, Ary Serpa, Balazote, Pablo Serrano, Shadowitz, Ellen, Shahidan, Syamin Asyraf, Shamsah, Mohammad, Shankar, Anuraj, Sharjeel, Shaikh, Sharma, Pratima, Shaw, Catherine A.; Shaw, Victoria, Sheharyar, Ashraf, Shetty, Rohan, Shetty, Rajesh Mohan, Shi, Haixia, Shiekh, Mohiuddin, Shime, Nobuaki, Shimizu, Keiki, Shrapnel, Sally, Shrestha, Pramesh Sundar, Shrestha, Shubha Kalyan, Shum, Hoi Ping, Mohammed, Nassima Si, Siang, Ng Yong, Sibiude, Jeanne, Siddiqui, Atif, Sigfrid, Louise, Sillaots, Piret, Silva, Catarina, Silva, Rogério, Silva, Maria Joao, Heng, Benedict Sim Lim, Sin, Wai Ching, Sinatti, Dario, Singh, Punam, Singh, Budha Charan, Sitompul, Pompini Agustina, Sivam, Karisha, Skogen, Vegard, Smith, Sue, Smood, Benjamin, Smyth, Coilin, Smyth, Michelle, Snacken, Morgane, So, Dominic, Soh, Tze Vee, Solberg, Lene Bergendal, Solomon, Joshua, Solomon, Tom, Somers, Emily, Sommet, Agnès, Song, Rima, Song, Myung Jin, Song, Tae, Chia, Jack Song, Sonntagbauer, Michael, Soom, Azlan Mat, Søraas, Arne, Søraas, Camilla Lund, Sotto, Alberto, Soum, Edouard, Sousa, Marta, Sousa, Ana Chora, Uva, Maria Sousa, Souza‐Dantas, Vicente, Sperry, Alexandra, Spinuzza, Elisabetta, Darshana, B. P. Sanka Ruwan Sri, Sriskandan, Shiranee, Stabler, Sarah, Staudinger, Thomas, Stecher, Stephanie‐Susanne, Steinsvik, Trude, Stienstra, Ymkje, Stiksrud, Birgitte, Stolz, Eva, Stone, Amy, Streinu‐Cercel, Adrian, Streinu‐Cercel, Anca, Stuart, David, Stuart, Ami, Subekti, Decy, Suen, Gabriel, Suen, Jacky Y.; Sultana, Asfia, Summers, Charlotte, Supic, Dubravka, Suppiah, Deepashankari, Surovcová, Magdalena, Suwarti, Suwarti, Svistunov, Andrey, Syahrin, Sarah, Syrigos, Konstantinos, Sztajnbok, Jaques, Szuldrzynski, Konstanty, Tabrizi, Shirin, Taccone, Fabio S.; Tagherset, Lysa, Taib, Shahdattul Mawarni, Talarek, Ewa, Taleb, Sara, Talsma, Jelmer, Tamisier, Renaud, Tampubolon, Maria Lawrensia, Tan, Kim Keat, Tan, Yan Chyi, Tanaka, Taku, Tanaka, Hiroyuki, Taniguchi, Hayato, Taqdees, Huda, Taqi, Arshad, Tardivon, Coralie, Tattevin, Pierre, Taufik, M. Azhari, Tawfik, Hassan, Tedder, Richard S.; Tee, Tze Yuan, Teixeira, João, Tejada, Sofia, Tellier, Marie‐Capucine, Teoh, Sze Kye, Teotonio, Vanessa, Téoulé, François, Terpstra, Pleun, Terrier, Olivier, Terzi, Nicolas, Tessier‐Grenier, Hubert, Tey, Adrian, Thabit, Alif Adlan Mohd, Thakur, Anand, Tham, Zhang Duan, Thangavelu, Suvintheran, Thibault, Vincent, Thiberville, Simon‐Djamel, Thill, Benoît, Thirumanickam, Jananee, Thompson, Shaun, Thomson, Emma C.; Thurai, Surain Raaj Thanga, Thwaites, Ryan S.; Tierney, Paul, Tieroshyn, Vadim, Timashev, Peter S.; Timsit, Jean‐François, Vijayaraghavan, Bharath Kumar Tirupakuzhi, Tissot, Noémie, Toh, Jordan Zhien Yang, Toki, Maria, Tonby, Kristian, Tonnii, Sia Loong, Torres, Margarida, Torres, Antoni, Santos‐Olmo, Rosario Maria Torres, Torres‐Zevallos, Hernando, Towers, Michael, Trapani, Tony, Treoux, Théo, Tromeur, Cécile, Trontzas, Ioannis, Trouillon, Tiffany, Truong, Jeanne, Tual, Christelle, Tubiana, Sarah, Tuite, Helen, Turmel, Jean‐Marie, Turtle, Lance C. W.; Tveita, Anders, Twardowski, Pawel, Uchiyama, Makoto, Udayanga, P. G. Ishara, Udy, Andrew, Ullrich, Roman, Uribe, Alberto, Usman, Asad.
Influenza and Other Respiratory Viruses ; 2022.
Article in English | Web of Science | ID: covidwho-2019369

ABSTRACT

Introduction: Case definitions are used to guide clinical practice, surveillance and research protocols. However, how they identify COVID-19-hospitalised patients is not fully understood. We analysed the proportion of hospitalised patients with laboratory-confirmed COVID-19, in the ISARIC prospective cohort study database, meeting widely used case definitions. Methods: Patients were assessed using the Centers for Disease Control (CDC), European Centre for Disease Prevention and Control (ECDC), World Health Organization (WHO) and UK Health Security Agency (UKHSA) case definitions by age, region and time. Case fatality ratios (CFRs) and symptoms of those who did and who did not meet the case definitions were evaluated. Patients with incomplete data and non-laboratory-confirmed test result were excluded. Results: A total of 263,218 of the patients (42%) in the ISARIC database were included. Most patients (90.4%) were from Europe arid Central Asia. The proportions of patients meeting the case definitions were 56.8% (WHO), 74.4% (UKHSA), 81.6% (ECDC) and 82.3% (CDC). For each case definition, patients at the extremes of age distribution met the criteria less frequently than those aged 30 to 70 years;geographical and time variations were also observed. Estimated CFRs were similar for the patients who met the case definitions. However, when more patients did riot meet the case definition, the CFR increased. Conclusions: The performance of case definitions might be different in different regions and may change over time. Similarly concerning is the fact that older patients often did not meet case definitions, risking delayed medical care. While epidemiologists must balance their analytics with field applicability, ongoing revision of case definitions is necessary to improve patient care through early diagnosis and limit potential nosocomial spread.

3.
EuropePMC;
Preprint in English | EuropePMC | ID: ppcovidwho-327725

ABSTRACT

Objectives: We evaluated the clinical, virological and safety outcomes of lopinavir/ritonavir, lopinavir/ritonavir-interferon (IFN)-beta-1a, hydroxychloroquine or remdesivir in comparison to standard of care (control) in COVID-19 inpatients requiring oxygen and/or ventilatory support. While preliminary results were previously published, we present here the final results, following completion of the data monitoring. Methods We conducted a phase 3 multi-centre open-label, randomized 1:1:1:1:1, adaptive, controlled trial (DisCoVeRy), add-on trial to Solidarity ( NCT04315948 , EudraCT2020-000936-23). The primary outcome was the clinical status at day 15, measured by the WHO 7-point ordinal scale. Secondary outcomes included SARS-CoV-2 quantification in respiratory specimens, pharmacokinetic and safety analyses. We report the results for the lopinavir/ritonavir-containing arms and for the hydroxychloroquine arm, which were stopped prematurely. Results The intention-to-treat population included 593 participants (lopinavir/ritonavir, n=147;lopinavir/ritonavir-IFN-beta-1a, n=147;hydroxychloroquine, n=150;control, n=149), among whom 421 (71.0%) were male, the median age was 64 years (IQR, 54-71) and 214 (36.1%) had a severe disease. The day 15 clinical status was not improved with investigational treatments: lopinavir/ritonavir versus control, adjusted odds ratio (aOR) 0.82, (95% confidence interval [CI] 0.54-1.25, P=0.36);lopinavir/ritonavir-IFN-beta-1a versus control, aOR 0.69 (95%CI 0.45-1.05, P=0.08);hydroxychloroquine versus control, aOR 0.94 (95%CI 0.62-1.41, P=0.76). No significant effect of investigational treatment was observed on SARS-CoV-2 clearance. Trough plasma concentrations of lopinavir and ritonavir were higher than those expected, while those of hydroxychloroquine were those expected with the dosing regimen. The occurrence of Serious Adverse Events was significantly higher in participants allocated to the lopinavir/ritonavir-containing arms. Conclusion In adults hospitalized for COVID-19, lopinavir/ritonavir, lopinavir/ritonavir-IFN-beta-1a and hydroxychloroquine did not improve the clinical status at day 15, nor SARS-CoV-2 clearance in respiratory tract specimens.

4.
EuropePMC; 2020.
Preprint in English | EuropePMC | ID: ppcovidwho-314461

ABSTRACT

Background: To evaluate the switching of patients mechanically ventilated on Pressure Support or Volume Control to inverse-ratio Airway Pressure Release Ventilation (APRV) during the COVID-19 pandemic. Methods: : We performed a single-center retrospective observational analysis in two ICUs in a tertiary referral university teaching hospital in France. Were included patients with Covid-19 pneumonia requiring invasive ventilation with a PaO2:FiO2 ratio lower than 200 mmHg who performed a 6-hour trial of inverse-ratio APRV. Results: : Seventeen consecutive patients who completed a 6-hour APRV trial in April 2020 were included. Three patients who were unable to be maintained on APRV due to an immediate fall in SpO2 were not included. In 12/17 patients (71%), the increase in PaO2:FiO2 ratio was greater than 20%. Mean (± standard deviation) PaO2:FiO2 ratio increased from 126 (± 28) mmHg to 178 (± 53) mmHg after 6 hours of APRV (p<0.001). Two patients presented a decrease in PaO2:FiO2 ratio after 6 hours of APRV. There was no appearance of significant hemodynamic impairment during APRV and an eventual increase in PaCO2 during the first hour of APRV was managed by increasing the respiratory rate (i.e. shortening T-high) and/or increasing tidal volume (i.e. increasing T-low). Conclusions: : Switching from Conventional Ventilation (Pressure Support or Volume Assist Control) to inverse-ratio APRV for a 6-hour period in two ICUs that were not previously familiar with this ventilation technique was well tolerated, and associated with a marked improvement in oxygenation. Further studies evaluating inverse-ratio APRV in acute respiratory failure are warranted. Trial registration: NCT04386369

5.
EuropePMC; 2021.
Preprint in English | EuropePMC | ID: ppcovidwho-313079

ABSTRACT

We conducted a pilot study to evaluate the potential and feasibility of back-support exoskeletons to help the caregivers in the Intensive Care Unit (ICU) of the University Hospital of Nancy (France) executing Prone Positioning (PP) maneuvers on patients suffering from severe COVID-19-related Acute Respiratory Distress Syndrome. After comparing four commercial exoskeletons, the Laevo passive exoskeleton was selected and used in the ICU in April 2020. The first volunteers using the Laevo reported very positive feedback and reduction of effort, confirmed by EMG and ECG analysis. Laevo has been since used to physically assist during PP in the ICU of the Hospital of Nancy, following the recrudescence of COVID-19, with an overall positive feedback.

6.
EuropePMC; 2020.
Preprint in English | EuropePMC | ID: ppcovidwho-309702

ABSTRACT

Background: The COVID-19 pandemic is a heavy burden in terms of health care resources. Future decision-making policies require consistent data on the management and prognosis of the older patients (>70 years old) with COVID-19 admitted in the intensive care unit (ICU).Methods: Characteristics, management, and prognosis of critically-ill old patients (>70 years) were extracted from the international prospective COVID-ICU database. A propensity score weighted-comparison evaluated the impact of intubation upon admission on Day-90 mortality.Findings: The analysis included 1,199 (28% of the COVID-ICU cohort) patients (median [interquartile] age 74 [72 – 78] years). Fifty-three percent, 31%, and 16% were 70-74, 75-79, and over 80 years old, respectively. The most frequent comorbidities were chronic hypertension (62%), diabetes (30%), and chronic respiratory disease (25%). Median Clinical Frailty Scale was 3 (2-3). Upon admission, the PaO2/FiO2 ratio was 154 (105 – 222). 740 (62%) patients were intubated on Day-1 and eventually 938 (78%) during their ICU stay. Overall Day-90 mortality was 46% and reached 67% among the 193 patients over 80 years old. Mortality was higher in older patients, diabetics, and those with a lower PaO2/FiO2 ratio upon admission, cardiovascular dysfunction, and a shorter time between first symptoms and ICU admission. In propensity analysis, early intubation at ICU admission was associated with a significantly higher Day-90 mortality (42% vs 28%;Hazard Ratio 1·68;95% CI, 1·24 – 2·27;p<0·001).Interpretation: Patients over 70 years old represented more than a quarter of the COVID-19 population admitted in the participating ICUs during the first wave. Day-90 mortality was 46%, with dismal outcomes reported for patients older than 80 years or those intubated upon ICU admission.Funding Statement: This study was funded by the Fondation AP-HP and the Direction de la Recherche Clinique et du Developpement and the French Ministry of Health. The REVA network received a 75 000 € research grant from Air Liquide Healthcare.Declaration of Interests: Dr Schmidt reported personal fees from Getinge, Drager, and Xenios, outside the submitted work. Dr Demoule reports personal fees from Medtronic, grants, personal fees and nonfinancial support from Philips, personal fees from Baxter, personal fees from Hamilton, personal fees and non-financial support from Fisher & Paykel, grants from French Ministry of Health, personal fees from Getinge, grants and personal fees from Respinor, grants and nonfinancial support from Lungpacer, outside the submitted work. Dr Dres reported personal fees from Lungpacer. No other disclosures were reported.Ethics Approval Statement: COVID-ICU received approval from the ethical committee of the French Intensive Care Society (CE-SRLF 20-23) following our local regulations.

7.
EuropePMC; 2021.
Preprint in English | EuropePMC | ID: ppcovidwho-304820

ABSTRACT

Background: The antiviral efficacy of remdesivir is still controversial. We aimed at evaluating its clinical effectiveness in patients with COVID-19 requiring oxygen and/or ventilator support.Methods: In this European multicentre, open-label, parallel-group, randomised, controlled trial in adults hospitalised with COVID-19 (DisCoVeRy, NCT04315948;EudraCT2020-000936-23), participants were randomly allocated to receive usual standard of care alone or in combination with intravenous remdesivir (200 mg on day 1, then 100 mg once-daily for 9 days or until discharge). Treatment assignation was performed via web-based randomisation stratified on illness severity and administrative European region. The primary outcome was the clinical status at day 15 measured by the WHO 7-point ordinal scale, assessed in the intention-to-treat population.Findings: Between March 22nd, 2020 and January 21st, 2021, 857 participants were randomised to one of the two arms in 5 European countries and 832 participants were included for the evaluation of remdesivir (control, n=418;remdesivir, n=414). There was no difference in the clinical status neither at day 15 between treatment groups (OR for remdesivir, 0.98, 95% CI, 0.77 to 1.25, P=0.85) nor at day 29. The proportion of deaths at day 28 was not significantly different between control (8.9%) and remdesivir (8.2%) treatment groups (OR for remdesivir, 0.93 95%CI 0.57 to 1.52, P=0.77). There was also no difference on SARS-CoV-2 viral kinetics (effect of remdesivir on viral load slope, -0.004 log10 cp/10,000 cells/day, 95% CI, -0.03 to 0.02, P=0.75). There was no significant difference in the occurrence of Serious Adverse Events between treatment groups.Interpretation: The use of remdesivir for the treatment of hospitalised patients with COVID-19 was not associated with clinical improvement at day 15 or day 29, nor with a reduction in mortality, nor with a reduction in SARS-CoV-2 RNA.Trial Registration: DisCoVeRy, NCT04315948;EudraCT2020-000936-23Funding: European Union Commission, French Ministry of Health, DIM One Health Île-de-France, REACTing, Fonds Erasme-COVID-ULB;Belgian Health Care Knowledge Centre (KCE)Declaration of Interests: Dr. Costagliola reports grants and personal fees from Janssen, personal fees from Gilead, outside the submitted work. Dr. Mentré reports grants from INSERM Reacting (French Government), grants from Ministry of Health (French Government), grants from European Commission, during the conduct of the study;grants from Sanofi, grants from Roche, outside the submitted work. Dr. Hites reports grants from The Belgian Center for Knowledge (KCE), grants from Fonds Erasme-COVID-ULB, during the conduct of the study;personal fees from Gilead, outside the submitted work. Dr. Mootien reports non-financial support from GILEAD, outside the submitted work. Dr. Gaborit reports non-financial support from Gilead, non- financial support from MSD, outside the submitted work. Dr. Botelho-Nevers reports other from Pfizer, other from Janssen, outside the submitted work. Dr. Lacombe reports personal fees and non-financial support from Gilead, personal fees and non-financial support from Janssen, personal fees and non-financial support from MSD, personal fees and non-financial support from ViiV Healthcare, personal fees and non-financial support from Abbvie, during the conduct of the study. Dr. Wallet reports personal fees and non-financial support from Jazz pharmaceuticals, personal fees and non-financial support from Novartis, personal fees and nonPage financial support from Kite-Gilead, outside the submitted work. Dr. Kimmoun reports personal fees from Aguettan, personal fees from Aspen, outside the submitted work. Dr. Thiery reports personal fees from AMGEN, outside the submitted work. Dr. Burdet reports personal fees from Da Volterra, personal fees from Mylan Pharmaceuticals, outside the submitted work. Dr. Poissy reports personal fees from Gilead for lectures, outside the submitted work. Dr. Goehringer reports personal fees from G lead Sciences, non-financial support from Gilead Sciences, grants from Biomerieux, non-financial support from Pfizer, outside the submitted work. Dr. Peytavin reports personal fees from Gilead Sciences, personal fees from Merck France, personal fees from ViiV Healthcare, personal fees from TheraTechnologies, outside the submitted work. Dr. Danion reports personal fees from Gilead, outside the submitted work. Dr. Raffi reports personal fees from Gilead, personal fees from Janssen, personal fees from MSD, personal fees from Abbvie, personal fees from ViiV Healthcare, personal fees from Theratechnologies, personal fees from Pfizer, outside the submitted work. Dr. Gallien reports personal fees from Gilead, personal fees from Pfizer, personal fees from ViiV, personal fees from MSD, outside the submitted work;and has received consulting fee from Gilead in August 2020 to check the registration file of remdesivir for the French administration. Dr. Nseir reports personal fees from MSD, personal fees from Pfizer, personal fees from Gilead, personal fees from Biomérieux, personal fees from BioRad, outside the submitted work. Dr. Lefèvre reports personal fees from Mylan, personal fees from Gilead, outside the submitted work. Dr. Guedj reports personal fees from Roche, outside the submitted work. Other authors have nothing to disclose.Ethics Approval Statement: The trial was approved by the Ethics Committee (CPP Ile-de-France-III, approval #20.03.06.51744), and is sponsored by the Institut national de la santé et de la recherche médicale (Inserm, France);it was conducted in accordance with the Declaration of Helsinki. Written informed consent was obtained from all included participants (or their legal representatives if unable to consent). The present analysis is based on the protocol v11.0 of December 12th, 2020.

9.
Ann Intensive Care ; 10(1): 24, 2020 Feb 13.
Article in English | MEDLINE | ID: covidwho-1453061

ABSTRACT

BACKGROUND: Right ventricular (RV) function evaluation by echocardiography is key in the management of ICU patients with acute respiratory distress syndrome (ARDS), however, it remains challenging. Quantification of RV deformation by speckle-tracking echocardiography (STE) is a recently available and reproducible technique that provides an integrated analysis of the RV. However, data are scarce regarding its use in critically ill patients. The aim of this study was to assess its feasibility and clinical usefulness in moderate-severe ARDS patients. RESULTS: Forty-eight ARDS patients under invasive mechanical ventilation (MV) were consecutively enrolled in a prospective observational study. A full transthoracic echocardiography was performed within 36 h of MV initiation. STE-derived and conventional parameters were recorded. Strain imaging of the RV lateral, inferior and septal walls was highly feasible (47/48 (98%) patients). Interobserver reproducibility of RV strain values displayed good reliability (intraclass correlation coefficients (ICC) > 0.75 for all STE-derived parameters) in ARDS patients. ROC curve analysis showed that lateral, inferior, global (average of the 3 RV walls) longitudinal systolic strain (LSS) and global strain rate demonstrated significant diagnostic values when compared to several conventional indices (TAPSE, S', RV FAC). A RV global LSS value > - 13.7% differentiated patients with a TAPSE < vs > 12 mm with a sensitivity of 88% and a specificity of 83%. Regarding clinical outcomes, mortality and cumulative incidence of weaning from MV at day 28 were not different in patients with normal versus abnormal STE-derived parameters. CONCLUSIONS: Global STE assessment of the RV was highly achievable and reproducible in moderate-severe ARDS patients under MV and additionally correlated with several conventional parameters of RV function. In our cohort, STE-derived parameters did not provide any incremental value in terms of survival or weaning from MV prediction. Further investigations are needed to evaluate their theranostic usefulness. Trial registration NCT02638844: NCT.

10.
Ann Intensive Care ; 11(1): 127, 2021 Aug 19.
Article in English | MEDLINE | ID: covidwho-1365388

ABSTRACT

BACKGROUND: The COVID-19 sanitary crisis inflicted different challenges regarding the reorganization of the human and logistic resources, particularly in intensive care unit (ICU). Interdependence between regional pandemic burden and individual outcome remains unknown. The study aimed to assess the association between ICU bed occupancy and case fatality rate of critically ill COVID-19 patients. METHODS: A cross-sectional study was performed in France, using the national hospital discharge database from March to May, 2020. All patients admitted to ICU for COVID-19 were included. Case fatality was described according to: (i) patient's characteristics (age, sex, comorbid conditions, ICU interventions); (ii) hospital's characteristics (baseline ICU experience assessed by the number of ICU stays in 2019, number of ICU physicians per bed), and (iii) the regional outbreak-related profiles (workload indicator based on ICU bed occupancy). The determinants of lethal outcome were identified using a logistic regression model. RESULTS: 14,513 COVID-19 patients were admitted to ICU; 4256 died (29.3%), with important regional inequalities in case fatality (from 17.6 to 33.5%). Older age, multimorbidity and clinical severity were associated with higher mortality, as well as a lower baseline ICU experience of the health structure. Regions with more than 10 days with ≥ 75% of ICU occupancy by COVID-19 patients experienced an excess of mortality (up to adjusted OR = 2.2 [1.9-2.6] for region with the highest occupancy rate of ICU beds). CONCLUSIONS: The regions with the highest burden of care in ICU were associated with up to 2.2-fold increase of death rate.

13.
BMC Infect Dis ; 21(1): 534, 2021 Jun 07.
Article in English | MEDLINE | ID: covidwho-1257922

ABSTRACT

BACKGROUND: Prone positioning (PP) is a standard of care for patients with moderate-severe acute respiratory distress syndrome (ARDS). While adverse events associated with PP are well-documented in the literature, research examining the effect of PP on the risk of infectious complications of intravascular catheters is lacking. METHOD: All consecutive ARDS patients treated with PP were recruited retrospectively over a two-year period and formed the exposed group. Intensive care unit (ICU) patients during the same period without ARDS for whom PP was not conducted but who had an equivalent disease severity were matched 1:1 to the exposed group based on age, sex, centre, length of ICU stay and SAPS II (unexposed group). Infection-related catheter complications were defined by a composite criterion, including catheter tip colonization or intravascular catheter-related infection. RESULTS: A total of 101 exposed patients were included in the study. Most had direct ARDS (pneumonia). The median [Q1-Q3] PP session number was 2 [1-4]. These patients were matched with 101 unexposed patients. The mortality rates of the exposed and unexposed groups were 31 and 30%, respectively. The incidence of the composite criterion was 14.2/1000 in the exposed group compared with 8.2/1000 days in the control group (p = 0.09). Multivariate analysis identified PP as a factor related to catheter colonization or infection (p = 0.04). CONCLUSION: Our data suggest that PP is associated with a higher risk of CVC infectious complications.


Subject(s)
Catheter-Related Infections/etiology , Patient Positioning/adverse effects , Respiratory Distress Syndrome/complications , Aged , Critical Care , Female , Humans , Incidence , Intensive Care Units , Male , Middle Aged , Prone Position , Respiratory Distress Syndrome/therapy , Retrospective Studies , Severity of Illness Index
14.
Clin Microbiol Infect ; 27(12): 1826-1837, 2021 Dec.
Article in English | MEDLINE | ID: covidwho-1242906

ABSTRACT

OBJECTIVES: We evaluated the clinical, virological and safety outcomes of lopinavir/ritonavir, lopinavir/ritonavir-interferon (IFN)-ß-1a, hydroxychloroquine or remdesivir in comparison to standard of care (control) in coronavirus 2019 disease (COVID-19) inpatients requiring oxygen and/or ventilatory support. METHODS: We conducted a phase III multicentre, open-label, randomized 1:1:1:1:1, adaptive, controlled trial (DisCoVeRy), an add-on to the Solidarity trial (NCT04315948, EudraCT2020-000936-23). The primary outcome was the clinical status at day 15, measured by the WHO seven-point ordinal scale. Secondary outcomes included quantification of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in respiratory specimens and pharmacokinetic and safety analyses. We report the results for the lopinavir/ritonavir-containing arms and for the hydroxychloroquine arm, trials of which were stopped prematurely. RESULTS: The intention-to-treat population included 583 participants-lopinavir/ritonavir (n = 145), lopinavir/ritonavir-IFN-ß-1a (n = 145), hydroxychloroquine (n = 145), control (n = 148)-among whom 418 (71.7%) were male, the median age was 63 years (IQR 54-71), and 211 (36.2%) had a severe disease. The day-15 clinical status was not improved with the investigational treatments: lopinavir/ritonavir versus control, adjusted odds ratio (aOR) 0.83, (95% confidence interval (CI) 0.55-1.26, p 0.39), lopinavir/ritonavir-IFN-ß-1a versus control, aOR 0.69 (95%CI 0.45-1.04, p 0.08), and hydroxychloroquine versus control, aOR 0.93 (95%CI 0.62-1.41, p 0.75). No significant effect of investigational treatment was observed on SARS-CoV-2 clearance. Trough plasma concentrations of lopinavir and ritonavir were higher than those expected, while those of hydroxychloroquine were those expected with the dosing regimen. The occurrence of serious adverse events was significantly higher in participants allocated to the lopinavir/ritonavir-containing arms. CONCLUSION: In adults hospitalized for COVID-19, lopinavir/ritonavir, lopinavir/ritonavir-IFN-ß-1a and hydroxychloroquine improved neither the clinical status at day 15 nor SARS-CoV-2 clearance in respiratory tract specimens.


Subject(s)
Antiviral Agents , COVID-19 , Hydroxychloroquine/therapeutic use , Interferon beta-1a/therapeutic use , Lopinavir/therapeutic use , Ritonavir/therapeutic use , Adult , Antiviral Agents/therapeutic use , COVID-19/drug therapy , Drug Combinations , Female , Humans , Male , Middle Aged , Treatment Outcome
15.
Ann Intensive Care ; 11(1): 77, 2021 May 14.
Article in English | MEDLINE | ID: covidwho-1229002

ABSTRACT

BACKGROUND: The COVID-19 pandemic is a heavy burden in terms of health care resources. Future decision-making policies require consistent data on the management and prognosis of the older patients (> 70 years old) with COVID-19 admitted in the intensive care unit (ICU). METHODS: Characteristics, management, and prognosis of critically ill old patients (> 70 years) were extracted from the international prospective COVID-ICU database. A propensity score weighted-comparison evaluated the impact of intubation upon admission on Day-90 mortality. RESULTS: The analysis included 1199 (28% of the COVID-ICU cohort) patients (median [interquartile] age 74 [72-78] years). Fifty-three percent, 31%, and 16% were 70-74, 75-79, and over 80 years old, respectively. The most frequent comorbidities were chronic hypertension (62%), diabetes (30%), and chronic respiratory disease (25%). Median Clinical Frailty Scale was 3 (2-3). Upon admission, the PaO2/FiO2 ratio was 154 (105-222). 740 (62%) patients were intubated on Day-1 and eventually 938 (78%) during their ICU stay. Overall Day-90 mortality was 46% and reached 67% among the 193 patients over 80 years old. Mortality was higher in older patients, diabetics, and those with a lower PaO2/FiO2 ratio upon admission, cardiovascular dysfunction, and a shorter time between first symptoms and ICU admission. In propensity analysis, early intubation at ICU admission was associated with a significantly higher Day-90 mortality (42% vs 28%; hazard ratio 1.68; 95% CI 1.24-2.27; p < 0·001). CONCLUSION: Patients over 70 years old represented more than a quarter of the COVID-19 population admitted in the participating ICUs during the first wave. Day-90 mortality was 46%, with dismal outcomes reported for patients older than 80 years or those intubated upon ICU admission.

17.
Front Physiol ; 11: 615690, 2020.
Article in English | MEDLINE | ID: covidwho-1121035

ABSTRACT

The growing coronavirus disease (COVID-19) crisis has stressed worldwide healthcare systems probably as never before, requiring a tremendous increase of the capacity of intensive care units to handle the sharp rise of patients in critical situation. Since the dominant respiratory feature of COVID-19 is worsening arterial hypoxemia, eventually leading to acute respiratory distress syndrome (ARDS) promptly needing mechanical ventilation, a systematic recourse to intubation of every hypoxemic patient may be difficult to sustain in such peculiar context and may not be deemed appropriate for all patients. Then, it is essential that caregivers have a solid knowledge of physiological principles to properly interpret arterial oxygenation, to intubate at the satisfactory moment, to adequately manage mechanical ventilation, and, finally, to initiate ventilator weaning, as safely and as expeditiously as possible, in order to make it available for the next patient. Through the expected mechanisms of COVID-19-induced hypoxemia, as well as the notion of silent hypoxemia often evoked in COVID-19 lung injury and its potential parallelism with high altitude pulmonary edema, from the description of hemoglobin oxygen affinity in patients with severe COVID-19 to the interest of the prone positioning in order to treat severe ARDS patients, this review aims to help caregivers from any specialty to handle respiratory support following recent knowledge in the pathophysiology of respiratory SARS-CoV-2 infection.

18.
Proc Natl Acad Sci U S A ; 118(8)2021 02 23.
Article in English | MEDLINE | ID: covidwho-1066042

ABSTRACT

The characterization of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) viral kinetics in hospitalized patients and its association with mortality is unknown. We analyzed death and nasopharyngeal viral kinetics in 655 hospitalized patients from the prospective French COVID cohort. The model predicted a median peak viral load that coincided with symptom onset. Patients with age ≥65 y had a smaller loss rate of infected cells, leading to a delayed median time to viral clearance occurring 16 d after symptom onset as compared to 13 d in younger patients (P < 10-4). In multivariate analysis, the risk factors associated with mortality were age ≥65 y, male gender, and presence of chronic pulmonary disease (hazard ratio [HR] > 2.0). Using a joint model, viral dynamics after hospital admission was an independent predictor of mortality (HR = 1.31, P < 10-3). Finally, we used our model to simulate the effects of effective pharmacological interventions on time to viral clearance and mortality. A treatment able to reduce viral production by 90% upon hospital admission would shorten the time to viral clearance by 2.0 and 2.9 d in patients of age <65 y and ≥65 y, respectively. Assuming that the association between viral dynamics and mortality would remain similar to that observed in our population, this could translate into a reduction of mortality from 19 to 14% in patients of age ≥65 y with risk factors. Our results show that viral dynamics is associated with mortality in hospitalized patients. Strategies aiming to reduce viral load could have an effect on mortality rate in this population.


Subject(s)
COVID-19/mortality , Models, Theoretical , Nasopharynx/virology , RNA, Viral/analysis , SARS-CoV-2/isolation & purification , Viral Load , Aged , Antibodies, Viral/blood , COVID-19/diagnosis , COVID-19/epidemiology , COVID-19/virology , Female , France/epidemiology , Hospitalization , Humans , Kinetics , Male , Prognosis , Prospective Studies , RNA, Viral/genetics , Risk Factors , SARS-CoV-2/genetics , Survival Rate
19.
Clin Infect Dis ; 71(9): 2447-2456, 2020 12 03.
Article in English | MEDLINE | ID: covidwho-960492

ABSTRACT

BACKGROUND: In patients with severe coronavirus disease 2019 (COVID-19), data are scarce and conflicting regarding whether chronic use of angiotensin-converting enzyme inhibitor (ACEI) or angiotensin receptor blocker (ARB) influences disease outcomes. In patients with severe COVID-19, we assessed the association between chronic ACEI/ARB use and the occurrence of kidney, lung, heart, and liver dysfunctions and the severity of the inflammatory reaction as evaluated by biomarkers kinetics, and their association with disease outcomes. METHODS: We performed a retrospective longitudinal cohort study on consecutive patients with newly diagnosed severe COVID-19. Independent predictors were assessed through receiver operating characteristic analysis, time-series analysis, logistic regression analysis, and multilevel modeling for repeated measures. RESULTS: On the 149 patients included in the study 30% (44/149) were treated with ACEI/ARB. ACEI/ARB use was independently associated with the following biochemical variations: phosphorus >40 mg/L (odds ratio [OR], 3.35, 95% confidence interval [CI], 1.83-6.14), creatinine >10.1 mg/L (OR, 3.22, 2.28-4.54), and urea nitrogen (UN) >0.52 g/L (OR, 2.65, 95% CI, 1.89-3.73). ACEI/ARB use was independently associated with acute kidney injury stage ≥1 (OR, 3.28, 95% CI, 2.17-4.94). The daily dose of ACEI/ARB was independently associated with altered kidney markers with an increased risk of +25 to +31% per each 10 mg increment of lisinopril-dose equivalent. In multivariable multilevel modeling, UN >0.52 g/L was independently associated with the risk of acute respiratory failure (OR, 3.54, 95% CI, 1.05-11.96). CONCLUSIONS: Patients chronically treated with ACEI/ARB who have severe COVID-19 are at increased risk of acute kidney injury. In these patients, the increase in UN associated with ACEI/ARB use could predict the development of acute respiratory failure.


Subject(s)
Acute Kidney Injury/chemically induced , Acute Kidney Injury/virology , Angiotensin Receptor Antagonists/adverse effects , Angiotensin-Converting Enzyme Inhibitors/adverse effects , COVID-19/complications , SARS-CoV-2 , Aged , Aged, 80 and over , Biomarkers/analysis , Female , France , Humans , Kidney/drug effects , Kidney/virology , Logistic Models , Longitudinal Studies , Male , Middle Aged , Multilevel Analysis , ROC Curve , Referral and Consultation , Retrospective Studies
SELECTION OF CITATIONS
SEARCH DETAIL