Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
Clin Infect Dis ; 2022 Jun 10.
Article in English | MEDLINE | ID: covidwho-1890910

ABSTRACT

BACKGROUND: SARS-CoV-2 and influenza viruses continue to co-circulate, representing two major public health threats from respiratory infections with similar clinical presentations. SARS-CoV-2 and influenza vaccines can also now be co-administered. However, data on antibody responses to SARS-CoV-2 and influenza co-infection, and vaccine co-administration remains limited. METHODS: We developed a 41-plex antibody immunity assay that can simultaneously characterize antibody landscapes to SARS-CoV-2/influenza/common human coronaviruses. We analyzed sera from 840 individuals (11-93 years), including sera from reverse transcription polymerase chain reaction (RT-PCR) confirmed SARS-CoV-2 positive (n = 218) and negative (n = 120) cases, paired sera from SARS-CoV-2 vaccination (n = 29) and infection (n = 11), and paired sera from influenza vaccination (n = 56) and RT-PCR confirmed influenza infection (n = 158) cases. Lastly, we analyzed sera collected from 377 individual that exhibited acute respiratory illness (ARI) in 2020. RESULTS: This 41-plex assay has high sensitivity and specificity in detecting SARS-CoV-2 infections. It differentiated SARS-CoV-2 vaccination (antibody responses only to spike protein) from infection (antibody responses to both spike and nucleoprotein). No cross-reactive antibodies were detected to SARS-CoV-2 from influenza vaccination and infection, and vice versa, suggesting no interaction between SARS-CoV-2 and influenza antibody responses. However, cross-reactive antibodies were detected between spike proteins of SARS-CoV-2 and common human coronaviruses that were removed by serum adsorption. Among 377 individual who exhibited ARI in 2020, 129 were influenza positive, none had serological evidence of SARS-CoV-2/influenza co-infections. CONCLUSIONS: Multiplex detection of antibody landscapes can provide in-depth analysis of the antibody protective immunity to SARS-CoV-2 in the context of other respiratory viruses including influenza.

2.
Influenza Other Respir Viruses ; 16(4): 607-612, 2022 Jul.
Article in English | MEDLINE | ID: covidwho-1703642

ABSTRACT

Reduced COVID-19 vaccine effectiveness (VE) has been observed with increasing predominance of SARS-CoV-2 Delta (B.1.617.2) variant. Two-dose VE against laboratory-confirmed SARS-CoV-2 infection (symptomatic and asymptomatic) was estimated using Cox proportional hazards models with time-varying vaccination status in a prospective rural community cohort of 1266 participants aged ≥12 years. Between November 3, 2020 and December 7, 2021, VE was 56% for mRNA COVID-19 vaccines overall, 65% for Moderna, and 50% for Pfizer-BioNTech. VE when Delta predominated (June to December 2021) was 54% for mRNA COVID-19 vaccines overall, 59% for Moderna, and 52% for Pfizer-BioNTech.


Subject(s)
COVID-19 Vaccines , COVID-19 , COVID-19/epidemiology , COVID-19/prevention & control , Humans , Prospective Studies , RNA, Messenger , Rural Population , SARS-CoV-2/genetics , Vaccine Efficacy , Wisconsin/epidemiology
3.
Influenza Other Respir Viruses ; 16(4): 673-679, 2022 Jul.
Article in English | MEDLINE | ID: covidwho-1685328

ABSTRACT

BACKGROUND: Individuals in contact with persons with COVID-19 are at high risk of developing COVID-19; protection offered by COVID-19 vaccines in the context of known exposure is poorly understood. METHODS: Symptomatic outpatients aged ≥12 years reporting acute onset of COVID-19-like illness and tested for SARS-CoV-2 between February 1 and September 30, 2021 were enrolled. Participants were stratified by self-report of having known contact with a COVID-19 case in the 14 days prior to illness onset. Vaccine effectiveness was evaluated using the test-negative study design and multivariable logistic regression. RESULTS: Among 2229 participants, 283/451 (63%) of those reporting contact and 331/1778 (19%) without known contact tested SARS-CoV-2-positive. Adjusted vaccine effectiveness was 71% (95% confidence interval [CI], 49%-83%) among fully vaccinated participants reporting a known contact versus 80% (95% CI, 72%-86%) among those with no known contact (p-value for interaction = 0.2). CONCLUSIONS: This study contributes to growing evidence of the benefits of vaccinations in preventing COVID-19 and support vaccination recommendations and the importance of efforts to increase vaccination coverage.


Subject(s)
COVID-19 , COVID-19/prevention & control , COVID-19 Vaccines , Humans , SARS-CoV-2 , Vaccination , Vaccine Efficacy
4.
J Infect Dis ; 2021 Sep 08.
Article in English | MEDLINE | ID: covidwho-1634069

ABSTRACT

Evaluations of vaccine effectiveness (VE) are important to monitor as COVID-19 vaccines are introduced in the general population. Research staff enrolled symptomatic participants seeking outpatient medical care for COVID-19-like illness or SARS-CoV-2 testing from a multisite network. VE was evaluated using the test-negative design. Among 236 SARS-CoV-2 nucleic acid amplification test-positive and 576 test-negative participants aged ≥16 years, VE of mRNA vaccines against COVID-19 was 91% (95% CI: 83-95) for full vaccination and 75% (95% CI: 55-87) for partial vaccination. Vaccination was associated with prevention of most COVID-19 cases among people seeking outpatient medical care.

5.
J Infect Dis ; 2021 Sep 08.
Article in English | MEDLINE | ID: covidwho-1402385

ABSTRACT

Evaluations of vaccine effectiveness (VE) are important to monitor as COVID-19 vaccines are introduced in the general population. Research staff enrolled symptomatic participants seeking outpatient medical care for COVID-19-like illness or SARS-CoV-2 testing from a multisite network. VE was evaluated using the test-negative design. Among 236 SARS-CoV-2 nucleic acid amplification test-positive and 576 test-negative participants aged ≥16 years, VE of mRNA vaccines against COVID-19 was 91% (95% CI: 83-95) for full vaccination and 75% (95% CI: 55-87) for partial vaccination. Vaccination was associated with prevention of most COVID-19 cases among people seeking outpatient medical care.

6.
Influenza Other Respir Viruses ; 15(6): 697-700, 2021 11.
Article in English | MEDLINE | ID: covidwho-1281998

ABSTRACT

The association of influenza vaccine and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection was assessed by test-negative design using data collected for a study of outpatient COVID-19-like illness with onset dates from June to September 2020. Multivariable logistic regression models examined the association between receipt of 2019-2020 influenza vaccine and PCR-confirmed SARS-CoV-2 with adjustment for potential confounders. Receipt of influenza vaccine during the 2019-2020 influenza season was not associated with increased odds of SARS-CoV-2 infection in adults (aOR 0.83, 95% CI 0.63 to 1.10) or children (aOR 0.92, 95% CI 0.47 to 1.80).


Subject(s)
COVID-19 , Influenza, Human , Adult , Child , Humans , Influenza, Human/epidemiology , Influenza, Human/prevention & control , SARS-CoV-2 , Seasons , Vaccination
7.
Open Forum Infect Dis ; 8(1): ofaa576, 2021 Jan.
Article in English | MEDLINE | ID: covidwho-944372

ABSTRACT

We compared symptoms and characteristics of 4961 ambulatory patients with and without laboratory-confirmed severe acute respiratory syndrome coronavirus 2 infection. Findings indicate that clinical symptoms alone would be insufficient to distinguish between coronavirus disease 2019 and other respiratory infections (eg, influenza) and/or to evaluate the effects of preventive interventions (eg, vaccinations).

SELECTION OF CITATIONS
SEARCH DETAIL