Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
Antiviral Res ; 205: 105372, 2022 Sep.
Article in English | MEDLINE | ID: covidwho-1914151

ABSTRACT

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Omicron subvariant BA.2 has spread in many countries, replacing the earlier Omicron subvariant BA.1 and other variants. Here, using a cell culture infection assay, we quantified the intrinsic sensitivity of BA.2 and BA.1 compared with other variants of concern, Alpha, Gamma, and Delta, to five approved-neutralizing antibodies and antiviral drugs. Our assay revealed the diverse sensitivities of these variants to antibodies, including the loss of response of both BA.1 and BA.2 to casirivimab and of BA.1 to imdevimab. In contrast, EIDD-1931 and nirmatrelvir showed a more conserved activities to these variants. The viral response profile combined with mathematical analysis estimated differences in antiviral effects among variants in the clinical concentrations. These analyses provide essential evidence that gives insight into variant emergence's impact on choosing optimal drug treatment.


Subject(s)
COVID-19 , SARS-CoV-2 , Antibodies, Monoclonal, Humanized , Antibodies, Neutralizing , Antibodies, Viral , Antiviral Agents/pharmacology , COVID-19/drug therapy , Humans
3.
Med (N Y) ; 3(4): 249-261.e4, 2022 04 08.
Article in English | MEDLINE | ID: covidwho-1783638

ABSTRACT

Background: The immune profile against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has dramatically diversified due to a complex combination of exposure to vaccines and infection by various lineages/variants, likely generating a heterogeneity in protective immunity in a given population. To further complicate this, the Omicron variant, with numerous spike mutations, has emerged. These circumstances have created the need to assess the potential of immune evasion by Omicron in individuals with various immune histories. Methods: The neutralization susceptibility of the variants, including Omicron and their ancestors, was comparably assessed using a panel of plasma/serum derived from individuals with divergent immune histories. Blood samples were collected from either mRNA vaccinees or from those who suffered from breakthrough infections of Alpha/Delta with multiple time intervals following vaccination. Findings: Omicron was highly resistant to neutralization in fully vaccinated individuals without a history of breakthrough infections. In contrast, robust cross-neutralization against Omicron was induced in vaccinees that experienced breakthrough infections. The time interval between vaccination and infection, rather than the variant types of infection, was significantly correlated with the magnitude and potency of Omicron-neutralizing antibodies. Conclusions: Immune histories with breakthrough infections can overcome the resistance to infection by Omicron, with the vaccination-infection interval being the key determinant of the magnitude and breadth of neutralization. The diverse exposure history in each individual warrants a tailored and cautious approach to understanding population immunity against Omicron and future variants. Funding: This study was supported by grants from the Japan Agency for Medical Research and Development (AMED).


Subject(s)
COVID-19 , SARS-CoV-2 , Antibodies, Viral , COVID-19 Vaccines , Humans , Postoperative Complications , Vaccination
4.
EuropePMC; 2022.
Preprint in English | EuropePMC | ID: ppcovidwho-329162

ABSTRACT

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Omicron subvariant BA.2 has spread in many countries, replacing the earlier Omicron subvariant BA.1 and other variants. Here, using a cell culture infection assay, we quantified the intrinsic sensitivity of BA.2 and BA.1 compared with other variants of concern, Alpha, Gamma, and Delta, to five approved-neutralizing antibodies and antiviral drugs. Our assay revealed the diverse sensitivities of these variants to antibodies, including the loss of response of both BA.1 and BA.2 to casirivimab and of BA.1 to imdevimab. In contrast, EIDD-1931 and nirmatrelvir showed a more conserved activities to these variants. The viral response profile combined with mathematical analysis estimated differences in antiviral effects among variants in the clinical concentrations. These analyses provide essential evidence that gives insight into the impact of variant emergence on choosing optimal drug treatment.

5.
Immunity ; 54(8): 1841-1852.e4, 2021 08 10.
Article in English | MEDLINE | ID: covidwho-1293863

ABSTRACT

Antibody titers against SARS-CoV-2 slowly wane over time. Here, we examined how time affects antibody potency. To assess the impact of antibody maturation on durable neutralizing activity against original SARS-CoV-2 and emerging variants of concern (VOCs), we analyzed receptor binding domain (RBD)-specific IgG antibodies in convalescent plasma taken 1-10 months after SARS-CoV-2 infection. Longitudinal evaluation of total RBD IgG and neutralizing antibody revealed declining total antibody titers but improved neutralization potency per antibody to original SARS-CoV-2, indicative of antibody response maturation. Neutralization assays with authentic viruses revealed that early antibodies capable of neutralizing original SARS-CoV-2 had limited reactivity toward B.1.351 (501Y.V2) and P.1 (501Y.V3) variants. Antibodies from late convalescents exhibited increased neutralization potency to VOCs, suggesting persistence of cross-neutralizing antibodies in plasma. Thus, maturation of the antibody response to SARS-CoV-2 potentiates cross-neutralizing ability to circulating variants, suggesting that declining antibody titers may not be indicative of declining protection.


Subject(s)
Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , COVID-19/immunology , COVID-19/virology , SARS-CoV-2/immunology , Antibodies, Monoclonal/immunology , Antibody Specificity , COVID-19/epidemiology , Humans , Immunoglobulin G , Neutralization Tests , SARS-CoV-2/genetics , Viral Load
6.
J Clin Virol ; 139: 104813, 2021 06.
Article in English | MEDLINE | ID: covidwho-1157471

ABSTRACT

BACKGROUND: The coronavirus disease 2019 (COVID-19) pandemic is a major public health concern. Accurate and rapid diagnosis of COVID-19 is critical for disease control. Reverse transcription loop-mediated isothermal amplification (RT-LAMP) is a nucleic acid amplification assay similar to reverse transcription-polymerase chain reaction (RT-PCR), the former being a simple, low cost, and rapid method. OBJECTIVES: This study aimed to compare the RT-LAMP assay with RT-PCR using the Loopamp™ SARS-CoV-2 Detection Kit. STUDY DESIGN: One hundred and fifty-one nasopharyngeal swab and 88 sputum samples obtained from individuals with suspected or confirmed COVID-19 were examined. RESULTS: RT-LAMP had high specificity (98.5 % (95 % CI: 96.9-100 %)), sensitivity (87.0 % (95 % CI: 82.8-91.3 %)), positive predictive value (97.9 % (95 % CI: 96.1-99.7 %)), negative predictive value (90.2 % (95 % CI: 86.4-94.0 %)), and concordance rate (93.3 % (95 % CI: 90.1-96.5 %)). Nasopharyngeal and sputum samples positive in RT-LAMP contained as few as 10.2 and 23.4 copies per 10 µL, respectively. RT-LAMP showed similar performance to RT-PCR for samples with cycle threshold value below 36. CONCLUSIONS: These results indicate that RT-LAMP is a highly reliable and at least equivalent to RT-PCR in utility, and potentially applicable in settings that are more diverse as a point-of-care tool.


Subject(s)
COVID-19 Nucleic Acid Testing/methods , COVID-19/diagnosis , Molecular Diagnostic Techniques/methods , Nucleic Acid Amplification Techniques/methods , SARS-CoV-2/genetics , COVID-19/virology , Humans , Sensitivity and Specificity , Viral Load
7.
BMJ Open Respir Res ; 8(1)2021 02.
Article in English | MEDLINE | ID: covidwho-1102195

ABSTRACT

BACKGROUND: An outbreak of novel coronavirus (SARS-CoV-2)-associated respiratory infectious diseases (COVID-19) emerged in 2019 and has spread rapidly in humans around the world. The demonstration of in vitro infectiousness of respiratory specimens is an informative surrogate for SARS-CoV-2 transmission from patients with COVID-19; accordingly, viral isolation assays in cell culture are an important aspect of laboratory diagnostics for COVID-19. METHODS: We developed a simple and rapid protocol for isolating SARS-CoV-2 from respiratory specimens using VeroE6/TMPRSS2 cells, a cell line that is highly susceptible to the virus. We also investigated a correlation between isolation of SARS-CoV-2 and viral load detected by real-time RT-PCR (rRT-PCR) using N2 primer/probe set that has been developed for testing of COVID-19 in Japan. RESULTS: The SARS-CoV-2 isolation protocol did not require blind passage of inoculated cells and yielded the results of viral isolation within 7 days after inoculation. Specimens with cycle threshold (Ct) values of <20.2, determined by rRT-PCR, were predicted to be isolation-positive. On the other hand, 6.9% of specimens with Ct values >35 were virus isolation-positive, indicating that low viral loads (high Ct values) in upper respiratory specimens do not always indicate no risk of containing transmissible virus. CONCLUSION: In combination with rRT-PCR, the SARS-CoV-2 isolation protocol provides a means for assessing the potential risk of transmissible virus in upper respiratory specimens.


Subject(s)
COVID-19/transmission , SARS-CoV-2/pathogenicity , Animals , COVID-19 Nucleic Acid Testing , Cell Line , Chlorocebus aethiops , Cytopathogenic Effect, Viral , Humans , Nasal Cavity/virology , Nasopharynx/virology , SARS-CoV-2/isolation & purification , Saliva/virology , Serine Endopeptidases/genetics , Specimen Handling , Vero Cells
SELECTION OF CITATIONS
SEARCH DETAIL