Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
2.
BMC Health Serv Res ; 21(1): 566, 2021 Jun 09.
Article in English | MEDLINE | ID: covidwho-1262505

ABSTRACT

BACKGROUND: Predicting bed occupancy for hospitalised patients with COVID-19 requires understanding of length of stay (LoS) in particular bed types. LoS can vary depending on the patient's "bed pathway" - the sequence of transfers of individual patients between bed types during a hospital stay. In this study, we characterise these pathways, and their impact on predicted hospital bed occupancy. METHODS: We obtained data from University College Hospital (UCH) and the ISARIC4C COVID-19 Clinical Information Network (CO-CIN) on hospitalised patients with COVID-19 who required care in general ward or critical care (CC) beds to determine possible bed pathways and LoS. We developed a discrete-time model to examine the implications of using either bed pathways or only average LoS by bed type to forecast bed occupancy. We compared model-predicted bed occupancy to publicly available bed occupancy data on COVID-19 in England between March and August 2020. RESULTS: In both the UCH and CO-CIN datasets, 82% of hospitalised patients with COVID-19 only received care in general ward beds. We identified four other bed pathways, present in both datasets: "Ward, CC, Ward", "Ward, CC", "CC" and "CC, Ward". Mean LoS varied by bed type, pathway, and dataset, between 1.78 and 13.53 days. For UCH, we found that using bed pathways improved the accuracy of bed occupancy predictions, while only using an average LoS for each bed type underestimated true bed occupancy. However, using the CO-CIN LoS dataset we were not able to replicate past data on bed occupancy in England, suggesting regional LoS heterogeneities. CONCLUSIONS: We identified five bed pathways, with substantial variation in LoS by bed type, pathway, and geography. This might be caused by local differences in patient characteristics, clinical care strategies, or resource availability, and suggests that national LoS averages may not be appropriate for local forecasts of bed occupancy for COVID-19. TRIAL REGISTRATION: The ISARIC WHO CCP-UK study ISRCTN66726260 was retrospectively registered on 21/04/2020 and designated an Urgent Public Health Research Study by NIHR.


Subject(s)
Bed Occupancy , COVID-19 , England , Humans , Length of Stay , SARS-CoV-2
3.
Wellcome Open Res ; 5: 239, 2020.
Article in English | MEDLINE | ID: covidwho-1175762

ABSTRACT

Introduction: Contact tracing has the potential to control outbreaks without the need for stringent physical distancing policies, e.g. civil lockdowns. Unlike forward contact tracing, backward contact tracing identifies the source of newly detected cases. This approach is particularly valuable when there is high individual-level variation in the number of secondary transmissions (overdispersion). Methods: By using a simple branching process model, we explored the potential of combining backward contact tracing with more conventional forward contact tracing for control of COVID-19. We estimated the typical size of clusters that can be reached by backward tracing and simulated the incremental effectiveness of combining backward tracing with conventional forward tracing. Results: Across ranges of parameter values consistent with dynamics of SARS-CoV-2, backward tracing is expected to identify a primary case generating 3-10 times more infections than a randomly chosen case, typically increasing the proportion of subsequent cases averted by a factor of 2-3. The estimated number of cases averted by backward tracing became greater with a higher degree of overdispersion. Conclusion: Backward contact tracing can be an effective tool for outbreak control, especially in the presence of overdispersion as is observed with SARS-CoV-2.

4.
Elife ; 102021 02 16.
Article in English | MEDLINE | ID: covidwho-1084995

ABSTRACT

Before the coronavirus 2019 (COVID-19) pandemic began, antimicrobial resistance (AMR) was among the top priorities for global public health. Already a complex challenge, AMR now needs to be addressed in a changing healthcare landscape. Here, we analyse how changes due to COVID-19 in terms of antimicrobial usage, infection prevention, and health systems affect the emergence, transmission, and burden of AMR. Increased hand hygiene, decreased international travel, and decreased elective hospital procedures may reduce AMR pathogen selection and spread in the short term. However, the opposite effects may be seen if antibiotics are more widely used as standard healthcare pathways break down. Over 6 months into the COVID-19 pandemic, the dynamics of AMR remain uncertain. We call for the AMR community to keep a global perspective while designing finely tuned surveillance and research to continue to improve our preparedness and response to these intersecting public health challenges.


Subject(s)
Anti-Bacterial Agents , COVID-19 , Critical Pathways , Drug Resistance, Bacterial/physiology , Global Health/trends , Anti-Bacterial Agents/supply & distribution , Anti-Bacterial Agents/therapeutic use , COVID-19/drug therapy , COVID-19/epidemiology , COVID-19/prevention & control , Communicable Disease Control/methods , Communicable Disease Control/organization & administration , Critical Pathways/organization & administration , Critical Pathways/trends , Humans , SARS-CoV-2
5.
Preprint in English | ProQuest Central | ID: ppcovidwho-2106

ABSTRACT

Background: Concern about the health impact of novel coronavirus SARS-CoV-2 has resulted in widespread enforced reductions in people’s movement (“lockdowns”). However, there are increasing concerns about the severe economic and wider societal consequences of these measures. Some countries have begun to lift some of the rules on physical distancing in a stepwise manner, with differences in what these “exit strategies” entail and their timeframes. The aim of this work was to inform such exit strategies by exploring the types of indoor and outdoor settings where transmission of SARS-CoV-2 has been reported to occur and result in clusters of cases. Identifying potential settings that result in transmission clusters allows these to be kept under close surveillance and/or to remain closed as part of strategies that aim to avoid a resurgence in transmission following the lifting of lockdown measures. Methods: We performed a systematic review of available literature and media reports to find settings reported in peer reviewed articles and media with these characteristics. These sources are curated and made available in an editable online database. Results: We found many examples of SARS-CoV-2 clusters linked to a wide range of mostly indoor settings. Few reports came from schools, many from households, and an increasing number were reported in hospitals and elderly care settings across Europe. Conclusions: We identified possible places that are linked to clusters of COVID-19 cases and could be closely monitored and/or remain closed in the first instance following the progressive removal of lockdown restrictions. However, in part due to the limits in surveillance capacities in many settings, the gathering of information such as cluster sizes and attack rates is limited in several ways: inherent recall bias, biased media reporting and missing data.

6.
BMC Med ; 18(1): 270, 2020 09 03.
Article in English | MEDLINE | ID: covidwho-742409

ABSTRACT

BACKGROUND: The COVID-19 pandemic has placed an unprecedented strain on health systems, with rapidly increasing demand for healthcare in hospitals and intensive care units (ICUs) worldwide. As the pandemic escalates, determining the resulting needs for healthcare resources (beds, staff, equipment) has become a key priority for many countries. Projecting future demand requires estimates of how long patients with COVID-19 need different levels of hospital care. METHODS: We performed a systematic review of early evidence on length of stay (LoS) of patients with COVID-19 in hospital and in ICU. We subsequently developed a method to generate LoS distributions which combines summary statistics reported in multiple studies, accounting for differences in sample sizes. Applying this approach, we provide distributions for total hospital and ICU LoS from studies in China and elsewhere, for use by the community. RESULTS: We identified 52 studies, the majority from China (46/52). Median hospital LoS ranged from 4 to 53 days within China, and 4 to 21 days outside of China, across 45 studies. ICU LoS was reported by eight studies-four each within and outside China-with median values ranging from 6 to 12 and 4 to 19 days, respectively. Our summary distributions have a median hospital LoS of 14 (IQR 10-19) days for China, compared with 5 (IQR 3-9) days outside of China. For ICU, the summary distributions are more similar (median (IQR) of 8 (5-13) days for China and 7 (4-11) days outside of China). There was a visible difference by discharge status, with patients who were discharged alive having longer LoS than those who died during their admission, but no trend associated with study date. CONCLUSION: Patients with COVID-19 in China appeared to remain in hospital for longer than elsewhere. This may be explained by differences in criteria for admission and discharge between countries, and different timing within the pandemic. In the absence of local data, the combined summary LoS distributions provided here can be used to model bed demands for contingency planning and then updated, with the novel method presented here, as more studies with aggregated statistics emerge outside China.


Subject(s)
Coronavirus Infections , Health Care Rationing , Length of Stay , Pandemics/statistics & numerical data , Pneumonia, Viral , Betacoronavirus , COVID-19 , Coronavirus Infections/epidemiology , Coronavirus Infections/therapy , Health Care Rationing/methods , Health Care Rationing/trends , Hospital Bed Capacity , Hospitalization/statistics & numerical data , Humans , Intensive Care Units/statistics & numerical data , Length of Stay/statistics & numerical data , Length of Stay/trends , Pneumonia, Viral/epidemiology , Pneumonia, Viral/therapy , SARS-CoV-2
7.
Elife ; 92020 08 24.
Article in English | MEDLINE | ID: covidwho-729762

ABSTRACT

A key unknown for SARS-CoV-2 is how asymptomatic infections contribute to transmission. We used a transmission model with asymptomatic and presymptomatic states, calibrated to data on disease onset and test frequency from the Diamond Princess cruise ship outbreak, to quantify the contribution of asymptomatic infections to transmission. The model estimated that 74% (70-78%, 95% posterior interval) of infections proceeded asymptomatically. Despite intense testing, 53% (51-56%) of infections remained undetected, most of them asymptomatic. Asymptomatic individuals were the source for 69% (20-85%) of all infections. The data did not allow identification of the infectiousness of asymptomatic infections, however low ranges (0-25%) required a net reproduction number for individuals progressing through presymptomatic and symptomatic stages of at least 15. Asymptomatic SARS-CoV-2 infections may contribute substantially to transmission. Control measures, and models projecting their potential impact, need to look beyond the symptomatic cases if they are to understand and address ongoing transmission.


Subject(s)
Asymptomatic Diseases , Coronavirus Infections/transmission , Pneumonia, Viral/therapy , Ships/statistics & numerical data , Betacoronavirus/isolation & purification , COVID-19 , Calibration , Coronavirus Infections/epidemiology , Coronavirus Infections/therapy , Humans , Incidence , Models, Statistical , Pandemics , Pneumonia, Viral/epidemiology , SARS-CoV-2
8.
Wellcome Open Res ; 5: 83, 2020.
Article in English | MEDLINE | ID: covidwho-654944

ABSTRACT

Background: Concern about the health impact of novel coronavirus SARS-CoV-2 has resulted in widespread enforced reductions in people's movement ("lockdowns"). However, there are increasing concerns about the severe economic and wider societal consequences of these measures. Some countries have begun to lift some of the rules on physical distancing in a stepwise manner, with differences in what these "exit strategies" entail and their timeframes. The aim of this work was to inform such exit strategies by exploring the types of indoor and outdoor settings where transmission of SARS-CoV-2 has been reported to occur and result in clusters of cases. Identifying potential settings that result in transmission clusters allows these to be kept under close surveillance and/or to remain closed as part of strategies that aim to avoid a resurgence in transmission following the lifting of lockdown measures. Methods: We performed a systematic review of available literature and media reports to find settings reported in peer reviewed articles and media with these characteristics. These sources are curated and made available in an editable online database. Results: We found many examples of SARS-CoV-2 clusters linked to a wide range of mostly indoor settings. Few reports came from schools, many from households, and an increasing number were reported in hospitals and elderly care settings across Europe. Conclusions: We identified possible places that are linked to clusters of COVID-19 cases and could be closely monitored and/or remain closed in the first instance following the progressive removal of lockdown restrictions. However, in part due to the limits in surveillance capacities in many settings, the gathering of information such as cluster sizes and attack rates is limited in several ways: inherent recall bias, biased media reporting and missing data.

SELECTION OF CITATIONS
SEARCH DETAIL
...