Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
1.
Infection ; 2022 Mar 01.
Article in English | MEDLINE | ID: covidwho-1712370

ABSTRACT

BACKGROUND: Five SARS-CoV-2 variants are currently considered as variants of concern (VOC). Omicron was declared a VOC at the end of November 2021. Based on different diagnostic methods, the occurrence of Omicron was reported by 52 countries worldwide on December 7 2021. First notified by South Africa with alarming reports on increasing infection rates, this new variant was soon suspected to replace the currently pre-dominating Delta variant leading to further infection waves worldwide. METHODS: Using VOC PCR screening and Next Generation Sequencing (NGS) analysis of selected samples, we investigated the circulation of Omicron in the German federal state Bavaria. For this, we analyzed SARS-CoV-2 surveillance data from our laboratory generated from calendar week (CW) 01 to 49/2021. RESULTS: So far, we have detected 69 Omicron cases in our laboratory from CW 47-49/2021 using RT-qPCR followed by melting curve analysis. The first 16 cases were analyzed by NGS and all were confirmed as Omicron. CONCLUSION: Our data strongly support no circulation of the new Omicron variant before CW 47/2021.

3.
Epidemiol Infect ; 149: e226, 2021 10 26.
Article in English | MEDLINE | ID: covidwho-1537267

ABSTRACT

The corona virus disease-2019 (COVID-19) pandemic began in Wuhan, China, and quickly spread around the world. The pandemic overlapped with two consecutive influenza seasons (2019/2020 and 2020/2021). This provided the opportunity to study community circulation of influenza viruses and severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2) in outpatients with acute respiratory infections during these two seasons within the Bavarian Influenza Sentinel (BIS) in Bavaria, Germany. From September to March, oropharyngeal swabs collected at BIS were analysed for influenza viruses and SARS-CoV-2 by real-time polymerase chain reaction. In BIS 2019/2020, 1376 swabs were tested for influenza viruses. The average positive rate was 37.6%, with a maximum of over 60% (in January). The predominant influenza viruses were Influenza A(H1N1)pdm09 (n = 202), Influenza A(H3N2) (n = 144) and Influenza B Victoria lineage (n = 129). In all, 610 of these BIS swabs contained sufficient material to retrospectively test for SARS-CoV-2. SARS-CoV-2 RNA was not detectable in any of these swabs. In BIS 2020/2021, 470 swabs were tested for influenza viruses and 457 for SARS-CoV-2. Only three swabs (0.6%) were positive for Influenza, while SARS-CoV-2 was found in 30 swabs (6.6%). We showed that no circulation of SARS-CoV-2 was detectable in BIS during the 2019/2020 influenza season, while virtually no influenza viruses were found in BIS 2020/2021 during the COVID-19 pandemic.


Subject(s)
COVID-19/epidemiology , Influenza, Human/epidemiology , Sentinel Surveillance , COVID-19/diagnosis , Germany/epidemiology , Humans , Incidence , Influenza, Human/diagnosis , Oropharynx/virology , Orthomyxoviridae/classification , Orthomyxoviridae/genetics , Orthomyxoviridae/isolation & purification , RNA, Viral/genetics , Retrospective Studies , SARS-CoV-2/genetics , SARS-CoV-2/isolation & purification , Seasons
4.
Infection ; 49(5): 1029-1032, 2021 Oct.
Article in English | MEDLINE | ID: covidwho-1198524

ABSTRACT

The Bavarian Influenza Sentinel (BIS) monitors the annual influenza season by combining virological and epidemiological data. The 2019/2020 influenza season overlapped with the beginning COVID-19 pandemic thus allowing to investigate whether there was an unnoticed spread of SARS-CoV-2 among outpatients with acute respiratory infections in the community prior to the first COVID-19 cluster in Bavaria. Therefore, we retrospectively analysed oropharyngeal swabs obtained in BIS between calendar week (CW) 39 in 2019 and CW 14 in 2020 for the presence of SARS-CoV-2 RNA by RT-PCR. 610 of all 1376 BIS swabs-contained sufficient material to test for SARS-CoV-2, among them 260 oropharyngeal swabs which were collected prior to the first notified German COVID-19 case in CW 04/2020. In none of these swabs SARS-CoV-2 RNA was detected suggesting no SARS-CoV-2 spread prior to late January 2020 in Bavaria.


Subject(s)
COVID-19 , Germany/epidemiology , Humans , Pandemics , RNA, Viral , Retrospective Studies , SARS-CoV-2
6.
Euro Surveill ; 25(24)2020 06.
Article in English | MEDLINE | ID: covidwho-605372

ABSTRACT

Containment strategies and clinical management of coronavirus disease (COVID-19) patients during the current pandemic depend on reliable diagnostic PCR assays for the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Here, we compare 11 different RT-PCR test systems used in seven diagnostic laboratories in Germany in March 2020. While most assays performed well, we identified detection problems in a commonly used assay that may have resulted in false-negative test results during the first weeks of the pandemic.


Subject(s)
Betacoronavirus/genetics , Clinical Laboratory Techniques/methods , Coronavirus Infections/diagnosis , Diagnostic Equipment , Pneumonia, Viral/diagnosis , COVID-19 , COVID-19 Testing , COVID-19 Vaccines , Clinical Laboratory Techniques/instrumentation , Feces/virology , Germany , Humans , Laboratories , Multiplex Polymerase Chain Reaction/instrumentation , Multiplex Polymerase Chain Reaction/methods , Pandemics , Real-Time Polymerase Chain Reaction/instrumentation , Real-Time Polymerase Chain Reaction/methods , Reverse Transcriptase Polymerase Chain Reaction/instrumentation , Reverse Transcriptase Polymerase Chain Reaction/methods , SARS-CoV-2 , Sensitivity and Specificity
7.
Lancet Infect Dis ; 20(8): 920-928, 2020 08.
Article in English | MEDLINE | ID: covidwho-276988

ABSTRACT

BACKGROUND: In December, 2019, the newly identified severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) emerged in Wuhan, China, causing COVID-19, a respiratory disease presenting with fever, cough, and often pneumonia. WHO has set the strategic objective to interrupt spread of SARS-CoV-2 worldwide. An outbreak in Bavaria, Germany, starting at the end of January, 2020, provided the opportunity to study transmission events, incubation period, and secondary attack rates. METHODS: A case was defined as a person with SARS-CoV-2 infection confirmed by RT-PCR. Case interviews were done to describe timing of onset and nature of symptoms and to identify and classify contacts as high risk (had cumulative face-to-face contact with a confirmed case for ≥15 min, direct contact with secretions or body fluids of a patient with confirmed COVID-19, or, in the case of health-care workers, had worked within 2 m of a patient with confirmed COVID-19 without personal protective equipment) or low risk (all other contacts). High-risk contacts were ordered to stay at home in quarantine for 14 days and were actively followed up and monitored for symptoms, and low-risk contacts were tested upon self-reporting of symptoms. We defined fever and cough as specific symptoms, and defined a prodromal phase as the presence of non-specific symptoms for at least 1 day before the onset of specific symptoms. Whole genome sequencing was used to confirm epidemiological links and clarify transmission events where contact histories were ambiguous; integration with epidemiological data enabled precise reconstruction of exposure events and incubation periods. Secondary attack rates were calculated as the number of cases divided by the number of contacts, using Fisher's exact test for the 95% CIs. FINDINGS: Patient 0 was a Chinese resident who visited Germany for professional reasons. 16 subsequent cases, often with mild and non-specific symptoms, emerged in four transmission generations. Signature mutations in the viral genome occurred upon foundation of generation 2, as well as in one case pertaining to generation 4. The median incubation period was 4·0 days (IQR 2·3-4·3) and the median serial interval was 4·0 days (3·0-5·0). Transmission events were likely to have occurred presymptomatically for one case (possibly five more), at the day of symptom onset for four cases (possibly five more), and the remainder after the day of symptom onset or unknown. One or two cases resulted from contact with a case during the prodromal phase. Secondary attack rates were 75·0% (95% CI 19·0-99·0; three of four people) among members of a household cluster in common isolation, 10·0% (1·2-32·0; two of 20) among household contacts only together until isolation of the patient, and 5·1% (2·6-8·9; 11 of 217) among non-household, high-risk contacts. INTERPRETATION: Although patients in our study presented with predominately mild, non-specific symptoms, infectiousness before or on the day of symptom onset was substantial. Additionally, the incubation period was often very short and false-negative tests occurred. These results suggest that although the outbreak was controlled, successful long-term and global containment of COVID-19 could be difficult to achieve. FUNDING: All authors are employed and all expenses covered by governmental, federal state, or other publicly funded institutions.


Subject(s)
Betacoronavirus/isolation & purification , Communicable Diseases, Imported/transmission , Coronavirus Infections/transmission , Disease Outbreaks , Disease Transmission, Infectious , Pneumonia, Viral/transmission , Travel-Related Illness , Adolescent , Adult , Betacoronavirus/classification , Betacoronavirus/genetics , COVID-19 , Child , Child, Preschool , China , Communicable Diseases, Imported/epidemiology , Communicable Diseases, Imported/pathology , Communicable Diseases, Imported/virology , Coronavirus Infections/epidemiology , Germany/epidemiology , Humans , Interviews as Topic , Middle Aged , Mutation , Pandemics , Pneumonia, Viral/epidemiology , RNA, Viral/genetics , Reverse Transcriptase Polymerase Chain Reaction , Risk Assessment , SARS-CoV-2 , Travel , Young Adult
8.
Euro Surveill ; 25(9)2020 03.
Article in English | MEDLINE | ID: covidwho-4532

ABSTRACT

The need for timely establishment of diagnostic assays arose when Germany was confronted with the first travel-associated outbreak of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in Europe. We describe our laboratory experiences during a large contact tracing investigation, comparing previously published real-time RT-PCR assays in different PCR systems and a commercial kit. We found that assay performance using the same primers and probes with different PCR systems varied and the commercial kit performed well.


Subject(s)
Betacoronavirus , Clinical Laboratory Techniques , Coronavirus Infections , Pneumonia, Viral , Real-Time Polymerase Chain Reaction/methods , Betacoronavirus/genetics , Betacoronavirus/isolation & purification , COVID-19 , COVID-19 Testing , COVID-19 Vaccines , Coronavirus Infections/diagnosis , Coronavirus Infections/genetics , Germany , Humans , Oligonucleotide Array Sequence Analysis , Pneumonia, Viral/diagnosis , Pneumonia, Viral/genetics , SARS-CoV-2 , Sensitivity and Specificity , Time Factors , Viral Envelope Proteins/analysis , Viral Envelope Proteins/genetics , Workflow
SELECTION OF CITATIONS
SEARCH DETAIL