Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 97
Filter
1.
EuropePMC; 2022.
Preprint in English | EuropePMC | ID: ppcovidwho-332903

ABSTRACT

Background Sotrovimab is a monoclonal antibody that neutralizes SARS-CoV-2 by binding to a highly conserved epitope in the receptor binding domain. It retains activity against the Omicron BA.1 variant and is used to treat immunocompromised patients as they are at increased risk for a severe outcome of COVID-19. Methods We studied viral evolution in 47 immunocompromised patients infected with Omicron BA.1 or 2 and treated with sotrovimab. SARS-CoV-2 PCR was performed at baseline and weekly thereafter until Ct-value was ≥ 30. All RNA samples were sequenced to determine the variant and occurrence of mutations, in particular in the Spike protein, after treatment. Results Twenty-four (51%) of the 47 patients were male and their median age was 63 years. Thirty-one (66%) had undergone a solid organ transplantation and 13 (28%) had received prior B-cell depleting therapy. Despite a history of vaccination, 24 of 30 patients with available data on anti-SARS-CoV-2 IgG Spike antibodies prior to treatment with sotrovimab had very low or no antibodies. Median time to viral clearance (Ct-value ≥ 30) after treatment was 15 days (IQR 7-22). However, viral RNA with low Ct-values was continuously detected for at least 28 days after treatment in four patients infected with BA.1. Mutations in the Spike protein at position 337 or 340 were observed in all four patients. Similar mutations were also found after treatment of two patients with a BA.2 infection but both cleared the virus within two weeks. Thus following treatment with sotrovimab, spike mutations associated with reduced in vitro susceptibility were detected in 6 of 47 (13%) patients. Conclusion Viral evolution towards resistance against sotrovimab can explain treatment failure in most immunocompromised patients and these patients can remain infectious after treatment. Therefore, documenting viral clearance after treatment is recommended to avoid that these patients unintentionally become a source of new, sotrovimab resistant, variants. Research on direct acting antivirals and possibly combination therapy for the treatment of COVID-19 in immunocompromised patients is needed.

2.
International Journal of Environmental Research and Public Health ; 19(8):4710, 2022.
Article in English | MDPI | ID: covidwho-1785712

ABSTRACT

The COVID-19 pandemic has a major impact on society, particularly affecting its vulnerable members, including pregnant women and their unborn children. Pregnant mothers reported fear of infection, fear of vertical transmission, fear of poor birth and child outcomes, social isolation, uncertainty about their partner's presence during medical appointments and delivery, increased domestic abuse, and other collateral damage, including vaccine hesitancy. Accordingly, pregnant women's known vulnerability for mental health problems has become a concern during the COVID-19 pandemic, also because of the known effects of prenatal stress for the unborn child. The current narrative review provides a historical overview of transgenerational effects of exposure to disasters during pregnancy, and the role of maternal prenatal stress. We place these effects into the perspective of the COVID-19 pandemic. Hereby, we aim to draw attention to the psychological impact of the COVID-19 pandemic on women of reproductive age (15–49 year) and its potential associated short-term and long-term consequences for the health of children who are conceived, carried, and born during this pandemic. Timely detection and intervention during the first 1000 days is essential to reduce the burden of transgenerational effects of the COVID-19 pandemic.

3.
SSRN; 2022.
Preprint in English | SSRN | ID: ppcovidwho-331736

ABSTRACT

Background: The i mmune response to COVID-19 vaccination is inferior in kidney transplant recipients (KTR), and to a lesser extent in patients on dialysis or with chronic kidney disease (CKD). We assessed the immune response 6 months after mRNA-1273 vaccination in kidney patients and compared this to controls. Methods: 152 participants with CKD stages G4/5 (eGFR <30 mL/min/1.73m 2 ), 145 participants on dialysis, 267 KTR, and 181 controls were included. SARS-CoV-2 Spike S1-specific IgG antibodies were measured by fluorescent bead-based multiplex-immunoassay, neutralizing antibodies to ancestral, Delta and Omicron (BA.1) variants by plaque reduction, and T-cell responses by IFN-γ release assay. Findings: At 6 months after vaccination S1-specific antibodies were detected in 100% of controls, 98.7% of CKD G4/5 patients, 95.1% of dialysis patients, and 56.6% of KTR. These figures were comparable to the response rates at 28 days, but antibody levels waned significantly. Neutralization of the ancestral and Delta variant was detected in most participants, whereas neutralization of Omicron was mostly absent. S-specific T-cell responses were detected 6 months in 75.0% of controls, 69.4% of CKD G4/5 patients, 52.6% of dialysis patients, and 12.9% of KTR. T-cell responses at 6 months were significantly lower than responses at 28 days. Interpretation: Although seropositivity rates at 6 months were comparable to that at 28 days after vaccination, significantly decreased antibody levels and T-cell responses were observed. The combination of low antibody levels, reduced T-cell responses, and absent neutralization of the newly-emerging variants indicates the need for additional boosts or alternative vaccination strategies in KTR.

4.
EuropePMC; 2022.
Preprint in English | EuropePMC | ID: ppcovidwho-331261

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection is associated with various neurological complications. SARS-CoV-2 infection induces neuroinflammation in the central nervous system (CNS), whereat the olfactory bulb seems to be involved most frequently. Here we show differences in the neuroinvasiveness and neurovirulence among SARS-CoV-2 variants in the hamster model five days post inoculation. Replication in the olfactory mucosa was observed in all hamsters, but most prominent in D614 inoculated hamsters. We observed neuroinvasion into the CNS via the olfactory nerve in D614G-, but not Delta (B.1.617.2)- or Omicron BA.1 (B.1.1.529) inoculated hamsters. Neuroinvasion was associated with neuroinflammation in the olfactory bulb of hamsters inoculated with D614G but hardly in Delta or Omicron BA.1. Altogether, this indicates that there are differences in the neuroinvasive and neurovirulent potential among SARS-CoV-2 variants in the acute phase of the infection in the hamster model.

5.
EuropePMC; 2022.
Preprint in English | EuropePMC | ID: ppcovidwho-330302

ABSTRACT

The Omicron BA.1 (B.1.1.529) SARS-CoV-2 variant is characterized by a high number of mutations in the viral genome, associated with immune-escape and increased viral spread. It remains unclear whether milder COVID-19 disease progression observed after infection with Omicron BA.1 in humans is due to reduced pathogenicity of the virus or due to pre-existing immunity from vaccination or previous infection. Here, we inoculated hamsters with Omicron BA.1 to evaluate pathogenicity and kinetics of viral shedding, compared to Delta (B.1.617.2) and to animals re-challenged with Omicron BA.1 after previous SARS-CoV-2 614G infection. Omicron BA.1 infected animals showed reduced clinical signs, pathological changes, and viral shedding, compared to Delta-infected animals, but still showed gross- and histopathological evidence of pneumonia. Pre-existing immunity reduced viral shedding and protected against pneumonia. Our data indicate that the observed decrease of disease severity is in part due to intrinsic properties of the Omicron BA.1 variant.

6.
Lancet ; 399(10329): 1027-1028, 2022 03 12.
Article in English | MEDLINE | ID: covidwho-1735072
7.
Euro Surveill ; 27(8)2022 02.
Article in English | MEDLINE | ID: covidwho-1714940

ABSTRACT

BackgroundSARS-CoV-2 RT-PCR assays are more sensitive than rapid antigen detection assays (RDT) and can detect viral RNA even after an individual is no longer infectious. RDT can reduce the time to test and the results might better correlate with infectiousness.AimWe assessed the ability of five RDT to identify infectious COVID-19 cases and systematically recorded the turnaround time of RT-PCR testing.MethodsSensitivity of RDT was determined using a serially diluted SARS-CoV-2 stock with known viral RNA concentration. The probability of detecting infectious virus at a given viral load was calculated using logistic regression of viral RNA concentration and matched culture results of 78 specimens from randomly selected non-hospitalised cases. The probability of each RDT to detect infectious cases was calculated as the sum of the projected probabilities for viral isolation success for every viral RNA load found at the time of diagnosis in 1,739 confirmed non-hospitalised COVID-19 cases.ResultsThe distribution of quantification cycle values and estimated RNA loads for patients reporting to drive-through testing was skewed to high RNA loads. With the most sensitive RDT (Abbott and SD Biosensor), 97.30% (range: 88.65-99.77) of infectious individuals would be detected. This decreased to 92.73% (range: 60.30-99.77) for Coris BioConcept and GenBody, and 75.53% (range: 17.55-99.77) for RapiGEN. Only 32.9% of RT-PCR results were available on the same day as specimen collection.ConclusionThe most sensitive RDT detected infectious COVID-19 cases with high sensitivity and may considerably improve containment through more rapid isolation and contact tracing.


Subject(s)
COVID-19 , SARS-CoV-2 , Antigens, Viral/analysis , COVID-19/diagnosis , COVID-19/epidemiology , COVID-19 Testing , Humans , Netherlands/epidemiology , SARS-CoV-2/genetics , Sensitivity and Specificity
8.
EuropePMC; 2022.
Preprint in English | EuropePMC | ID: ppcovidwho-329413

ABSTRACT

The emergence and rapid spread of SARS-CoV-2 variants may impact vaccine efficacy significantly 1 . The Omicron variant termed BA.2, which differs genetically substantially from BA.1, is currently replacing BA.1 in several countries, but its antigenic characteristics have not yet been assessed 2,3 . Here, we used antigenic cartography to quantify and visualize antigenic differences between SARS-CoV-2 variants using hamster sera obtained after primary infection. Whereas early variants are antigenically similar, clustering relatively close to each other in antigenic space, Omicron BA.1 and BA.2 have evolved as two distinct antigenic outliers. Our data show that BA.1 and BA.2 both escape (vaccine-induced) antibody responses as a result of different antigenic characteristics. Close monitoring of the antigenic changes of SARS-CoV-2 using antigenic cartography can be helpful in the selection of future vaccine strains.

9.
EuropePMC; 2020.
Preprint in English | EuropePMC | ID: ppcovidwho-323417

ABSTRACT

Background: An outbreak of COVID-19 in a nursing home in the Netherlands, following an on-site church service held on March 8, 2020, triggered an investigation to unravel sources and chain(s) of transmission.MethodsEpidemiological data were collected from registries and through a questionnaire among church visitors. Symptomatic residents and healthcare workers (HCWs) were tested for SARS-CoV-2 by RT-PCR and subjected to whole genome sequencing (WGS). Sequences from a selection of people from the same area were included as community reference.ResultsAfter the church service, 30 of 39 visitors (77%) developed symptoms;14 were tested and were positive for COVID-19 (11 residents and 3 non-residents). In the following five weeks, 62 of 300 residents (21%) and 30 of 640 HCWs (5%) tested positive for COVID-19;21 of 62 residents (34%) died. The outbreak was controlled through a cascade of measures. WGS of samples from residents and HCWs identified a diversity of sequence types, grouped into eight clusters. Seven resident church visitors all were infected with distinct viruses, four of which belonged to two larger clusters in the nursing home.ConclusionsAlthough initial investigation suggested the church service as source of the outbreak, detailed analysis showed a more complex picture, most consistent with widespread regional circulation of the virus in the weeks before the outbreak, and multiple introductions into the nursing home before the visitor ban. The findings underscore the importance of careful outbreak investigations to understand SARS-CoV-2 transmission to develop evidence-based mitigation measures.

10.
EuropePMC; 2020.
Preprint in English | EuropePMC | ID: ppcovidwho-311075

ABSTRACT

Convalescent plasma could be an inexpensive and widely available treatment for COVID-19 patients but reports on effectiveness are inconclusive. We collected convalescent plasma from donors with high titers of neutralizing anti-SARS-CoV-2 antibodies effectively blocking SARS-CoV-2 infection in vitro. In a randomized clinical trial of 86 COVID-19 patients, no overall clinical benefit of 300 mL convalescent plasma was found in patients hospitalized for COVID-19 in the Netherlands. Using a comprehensive translational approach, we unraveled the virological and immunological responses following plasma treatment which helps to understand which COVID-19 patients may benefit from this therapy and should be the focus of future studies. Convalescent plasma treatment in this patient group did not improve survival, had no effect on the clinical course of disease, nor did plasma enhance viral clearance in the respiratory tract, influence anti-SARS-CoV-2 antibody development or serum proinflammatory cytokines levels. The vast majority of patients already had potent neutralizing anti-SARS-CoV-2 antibodies at hospital admission and at comparable titers as the carefully selected plasma donors. Together, these data indicate that the variable effectivity observed in trials on convalescent plasma for COVID-19 may be explained by the timing of treatment and varying levels of preexisting anti-SARS-CoV-2 immunity in patients. It also substantiates that convalescent plasma should be studied as early as possible in the disease course or at least preceding the start of an autologous humoral response. Trial registration : Clinicaltrials.gov: NCT04342182

11.
EuropePMC; 2021.
Preprint in English | EuropePMC | ID: ppcovidwho-319564

ABSTRACT

Purpose:  To study the effect of Interferon-α auto-antibodies (IFN-α Abs) on clinical and virological outcomes in critically ill COVID-19 patients and the risk of IFN-α Abs transfer during convalescent plasma treatment. Methods: : Sera from cases of COVID-19 and other respiratory illness were tested for IFN-αAbs by ELISA and bioassay. IFN-α Abslevels were compared between critically, severely and moderately ill groups in both acute and convalescent stages. Longitudinal analyses were performed to determine whether IFN-α Abs levels change after convalescent plasma transfusion. Results: : Critically ill COVID-19 caseshad significantly higher IFN-α Abs detection rate and levels compared tonon-COVID-19 controls.Neutralizing IFN-α Abs levels were found in 1 out of 118plasma donors.Plasma from 2 positive donors was administered to 5 patients, with no subsequent elevation of IFN-α Abs levels in the recipients. Neutralizing levels of IFN-α Abswere associated with delayed viral clearance from the respiratory tract. Conclusions: : IFN-α Abs can be detected by ELISA in critical, severe, moderate and mild COVID-19 cases in both the acute and convalescent stages of disease. The presence of neutralizing IFN-α Abs in critically ill COVID-19 is associated with delayed viral clearance. Levels of IFN-α Abs inCOVID-19 convalescent plasma donorsare likely too low to be clinically relevant to the recipients.

12.
O'Toole, Áine, Hill, Verity, Pybus, Oliver, Watts, Alexander, Bogoch, Issac, Khan, Kamran, Messina, Jane, Tegally, Houriiyah, Lessells, Richard, Giandhari, Jennifer, Pillay, Sureshnee, Tumedi, Kefentse Arnold, Nyepetsi, Gape, Kebabonye, Malebogo, Matsheka, Maitshwarelo, Mine, Madisa, Tokajian, Sima, Hassan, Hamad, Salloum, Tamara, Merhi, Georgi, Koweyes, Jad, Geoghegan, Jemma, de Ligt, Joep, Ren, Xiaoyun, Storey, Matthew, Freed, Nikki, Pattabiraman, Chitra, Prasad, Pramada, Desai, Anita, Vasanthapuram, Ravi, Schulz, Thomas, Steinbrück, Lars, Stadler, Tanja, Parisi, Antonio, Bianco, Angelica, García de Viedma, Darío, Buenestado-Serrano, Sergio, Borges, Vítor, Isidro, Joana, Duarte, Sílvia, Gomes, João Paulo, Zuckerman, Neta, Mandelboim, Michal, Mor, Orna, Seemann, Torsten, Arnott, Alicia, Draper, Jenny, Gall, Mailie, Rawlinson, William, Deveson, Ira, Schlebusch, Sanmarié, McMahon, Jamie, Leong, Lex, Lim, Chuan Kok, Chironna, Maria, Loconsole, Daniela, Bal, Antonin, Josset, Laurence, Holmes, Edward, St. George, Kirsten, Lasek-Nesselquist, Erica, Sikkema, Reina, Oude Munnink, Bas, Koopmans, Marion, Brytting, Mia, Sudha rani, V.; Pavani, S.; Smura, Teemu, Heim, Albert, Kurkela, Satu, Umair, Massab, Salman, Muhammad, Bartolini, Barbara, Rueca, Martina, Drosten, Christian, Wolff, Thorsten, Silander, Olin, Eggink, Dirk, Reusken, Chantal, Vennema, Harry, Park, Aekyung, Carrington, Christine, Sahadeo, Nikita, Carr, Michael, Gonzalez, Gabo, de Oliveira, Tulio, Faria, Nuno, Rambaut, Andrew, Kraemer, Moritz, The, Covid-Genomics U. K. consortium, Network for Genomic Surveillance in South, Africa, Brazil, U. K. Cadde Genomic Network, Swiss Viollier Sequencing, Consortium, Diego, Search Alliance San, National Virus Reference, Laboratory, Seq, Covid Spain, Danish Covid-19 Genome, Consortium, Communicable Diseases Genomic, Network, Dutch National, Sars-CoV-surveillance program, Division of Emerging Infectious, Diseases.
EuropePMC; 2021.
Preprint in English | EuropePMC | ID: ppcovidwho-318194

ABSTRACT

Late in 2020, two genetically-distinct clusters of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) with mutations of biological concern were reported, one in the United Kingdom and one in South Africa. Using a combination of data from routine surveillance, genomic sequencing and international travel we track the international dispersal of lineages B.1.1.7 and B.1.351 (variant 501Y-V2). We account for potential biases in genomic surveillance efforts by including passenger volumes from location of where the lineage was first reported, London and South Africa respectively. Using the software tool grinch (global report investigating novel coronavirus haplotypes), we track the international spread of lineages of concern with automated daily reports, Further, we have built a custom tracking website (cov-lineages.org/global_report.html) which hosts this daily report and will continue to include novel SARS-CoV-2 lineages of concern as they are detected.

13.
Sci Immunol ; 7(69): eabo2202, 2022 03 25.
Article in English | MEDLINE | ID: covidwho-1673343

ABSTRACT

The severe acute respiratory distress syndrome coronavirus 2 (SARS-CoV-2) Omicron variant is spreading rapidly, even in vaccinated individuals, raising concerns about immune escape. Here, we studied neutralizing antibodies and T cell responses targeting SARS-CoV-2 D614G [wild type (WT)] and the Beta, Delta, and Omicron variants of concern in a cohort of 60 health care workers after immunization with ChAdOx-1 S, Ad26.COV2.S, mRNA-1273, or BNT162b2. High binding antibody levels against WT SARS-CoV-2 spike (S) were detected 28 days after vaccination with both mRNA vaccines (mRNA-1273 or BNT162b2), which substantially decreased after 6 months. In contrast, antibody levels were lower after Ad26.COV2.S vaccination but did not wane. Neutralization assays showed consistent cross-neutralization of the Beta and Delta variants, but neutralization of Omicron was significantly lower or absent. BNT162b2 booster vaccination after either two mRNA-1273 immunizations or Ad26.COV2 priming partially restored neutralization of the Omicron variant, but responses were still up to 17-fold decreased compared with WT. SARS-CoV-2-specific T cells were detected up to 6 months after all vaccination regimens, with more consistent detection of specific CD4+ than CD8+ T cells. No significant differences were detected between WT- and variant-specific CD4+ or CD8+ T cell responses, including Omicron, indicating minimal escape at the T cell level. This study shows that vaccinated individuals retain T cell immunity to the SARS-CoV-2 Omicron variant, potentially balancing the lack of neutralizing antibodies in preventing or limiting severe COVID-19. Booster vaccinations are needed to further restore Omicron cross-neutralization by antibodies.


Subject(s)
COVID-19 , SARS-CoV-2 , CD8-Positive T-Lymphocytes , COVID-19/prevention & control , COVID-19 Vaccines , Humans
14.
J Clin Immunol ; 42(2): 232-239, 2022 02.
Article in English | MEDLINE | ID: covidwho-1669888

ABSTRACT

PURPOSE: To study the effect of interferon-α2 auto-antibodies (IFN-α2 Abs) on clinical and virological outcomes in critically ill COVID-19 patients and the risk of IFN-α2 Abs transfer during convalescent plasma treatment. METHODS: Sera from healthy controls, cases of COVID-19, and other respiratory illness were tested for IFN-α2 Abs by ELISA and a pseudo virus-based neutralization assay. The effects of disease severity, sex, and age on the risk of having neutralizing IFN-α2 Abs were determined. Longitudinal analyses were performed to determine association between IFN-α2 Abs and survival and viral load and whether serum IFN-α2 Abs appeared after convalescent plasma transfusion. RESULTS: IFN-α2 neutralizing sera were found only in COVID-19 patients, with proportions increasing with disease severity and age. In the acute stage of COVID-19, all sera from patients with ELISA-detected IFN-α2 Abs (13/164, 7.9%) neutralized levels of IFN-α2 exceeding physiological concentrations found in human plasma and this was associated with delayed viral clearance. Convalescent plasma donors that were anti-IFN-α2 ELISA positive (3/118, 2.5%) did not neutralize the same levels of IFN-α2. Neutralizing serum IFN-α2 Abs were associated with delayed viral clearance from the respiratory tract. CONCLUSIONS: IFN-α2 Abs were detected by ELISA and neutralization assay in COVID-19 patients, but not in ICU patients with other respiratory illnesses. The presence of neutralizing IFN-α2 Abs in critically ill COVID-19 is associated with delayed viral clearance. IFN-α2 Abs in COVID-19 convalescent plasma donors were not neutralizing in the conditions tested.


Subject(s)
Autoantibodies/immunology , COVID-19/immunology , COVID-19/therapy , Interferon alpha-2/immunology , Plasma/immunology , Adult , Aged , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , Antiviral Agents/immunology , Blood Component Transfusion/methods , Critical Illness , Female , Humans , Immunization, Passive/methods , Immunoglobulin G/immunology , Male , Middle Aged , SARS-CoV-2/immunology
15.
N Engl J Med ; 386(10): 951-963, 2022 03 10.
Article in English | MEDLINE | ID: covidwho-1642068

ABSTRACT

BACKGROUND: The Ad26.COV2.S vaccine, which was approved as a single-shot immunization regimen, has been shown to be effective against severe coronavirus disease 2019. However, this vaccine induces lower severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike protein (S)-specific antibody levels than those induced by messenger RNA (mRNA)-based vaccines. The immunogenicity and reactogenicity of a homologous or heterologous booster in persons who have received an Ad26.COV2.S priming dose are unclear. METHODS: In this single-blind, multicenter, randomized, controlled trial involving health care workers who had received a priming dose of Ad26.COV2.S vaccine, we assessed immunogenicity and reactogenicity 28 days after a homologous or heterologous booster vaccination. The participants were assigned to receive no booster, an Ad26.COV2.S booster, an mRNA-1273 booster, or a BNT162b2 booster. The primary end point was the level of S-specific binding antibodies, and the secondary end points were the levels of neutralizing antibodies, S-specific T-cell responses, and reactogenicity. A post hoc analysis was performed to compare mRNA-1273 boosting with BNT162b2 boosting. RESULTS: Homologous or heterologous booster vaccination resulted in higher levels of S-specific binding antibodies, neutralizing antibodies, and T-cell responses than a single Ad26.COV2.S vaccination. The increase in binding antibodies was significantly larger with heterologous regimens that included mRNA-based vaccines than with the homologous booster. The mRNA-1273 booster was most immunogenic and was associated with higher reactogenicity than the BNT162b2 and Ad26.COV2.S boosters. Local and systemic reactions were generally mild to moderate in the first 2 days after booster administration. CONCLUSIONS: The Ad26.COV2.S and mRNA boosters had an acceptable safety profile and were immunogenic in health care workers who had received a priming dose of Ad26.COV2.S vaccine. The strongest responses occurred after boosting with mRNA-based vaccines. Boosting with any available vaccine was better than not boosting. (Funded by the Netherlands Organization for Health Research and Development ZonMw; SWITCH ClinicalTrials.gov number, NCT04927936.).


Subject(s)
/immunology , Antibodies, Viral/blood , COVID-19 Vaccines/immunology , Immunization, Secondary , Immunogenicity, Vaccine , Immunoglobulin G/blood , /immunology , Adult , Antibodies, Neutralizing/blood , Female , Humans , Interferon-gamma/blood , Male , Middle Aged , SARS-CoV-2 , Single-Blind Method , T-Lymphocytes/immunology
16.
PLoS One ; 16(12): e0260894, 2021.
Article in English | MEDLINE | ID: covidwho-1623649

ABSTRACT

BACKGROUND: Performance of the SD Biosensor saliva antigen rapid test was evaluated at a large designated testing site in non-hospitalized patients, with or without symptoms. METHOD: All eligible people over 18 years of age presenting for a booked appointment at the designated SARS-CoV-2 testing site were approached for inclusion and enrolled following verbal informed consent. One nasopharyngeal swab was taken to carry out the default antigen rapid test from which the results were reported back to the patient and one saliva sample was self-taken according to verbal instruction on site. This was used for the saliva antigen rapid test, the RT-PCR and for virus culture. Sensitivity of the saliva antigen rapid test was analyzed in two ways: i, compared to saliva RT-PCR; and ii, compared to virus culture of the saliva samples. Study participants were also asked to fill in a short questionnaire stating age, sex, date of symptom onset. Recommended time of ≥30mins since last meal, drink or cigarette if applicable was also recorded. The study was carried out in February-March 2021 for 4 weeks. RESULTS: We could include 789 people with complete records and results. Compared to saliva RT-PCR, overall sensitivity and specificity of the saliva antigen rapid test was 66.1% and 99.6% which increased to 88.6% with Ct ≤30 cutoff. Analysis by days post onset did not result in higher sensitivities because the large majority of people were in the very early phase of disease ie <3 days post onset. When breaking down the data for symptomatic and asymptomatic individuals, sensitivity ranged from 69.2% to 50% respectively, however the total number of RT-PCR positive asymptomatic participants was very low (n = 5). Importantly, almost all culture positive samples were detected by the rapid test. CONCLUSION: Overall, the potential benefits of saliva antigen rapid test, could outweigh the lower sensitivity compared to nasopharyngeal antigen rapid test in a comprehensive testing strategy, especially for home/self-testing and in vulnerable populations like elderly, disabled or children where in intrusive testing is either not possible or causes unnecessary stress.


Subject(s)
Biosensing Techniques/methods , COVID-19 Serological Testing/methods , Saliva/virology , Adolescent , Adult , Aged , COVID-19/diagnosis , COVID-19/etiology , Carrier State/virology , Female , Hospitalization , Humans , Male , Middle Aged , Nasopharynx/virology , Sensitivity and Specificity , Young Adult
17.
Lancet Oncol ; 22(12): 1681-1691, 2021 12.
Article in English | MEDLINE | ID: covidwho-1586209

ABSTRACT

BACKGROUND: Patients with cancer have an increased risk of complications from SARS-CoV-2 infection. Vaccination to prevent COVID-19 is recommended, but data on the immunogenicity and safety of COVID-19 vaccines for patients with solid tumours receiving systemic cancer treatment are scarce. Therefore, we aimed to assess the impact of immunotherapy, chemotherapy, and chemoimmunotherapy on the immunogenicity and safety of the mRNA-1273 (Moderna Biotech, Madrid, Spain) COVID-19 vaccine as part of the Vaccination Against COVID in Cancer (VOICE) trial. METHODS: This prospective, multicentre, non-inferiority trial was done across three centres in the Netherlands. Individuals aged 18 years or older with a life expectancy of more than 12 months were enrolled into four cohorts: individuals without cancer (cohort A [control cohort]), and patients with solid tumours, regardless of stage and histology, treated with immunotherapy (cohort B), chemotherapy (cohort C), or chemoimmunotherapy (cohort D). Participants received two mRNA-1273 vaccinations of 100 µg in 0·5 mL intramuscularly, 28 days apart. The primary endpoint, analysed per protocol (excluding patients with a positive baseline sample [>10 binding antibody units (BAU)/mL], indicating previous SARS-CoV-2 infection), was defined as the SARS-CoV-2 spike S1-specific IgG serum antibody response (ie, SARS-CoV-2-binding antibody concentration of >10 BAU/mL) 28 days after the second vaccination. For the primary endpoint analysis, a non-inferiority design with a margin of 10% was used. We also assessed adverse events in all patients who received at least one vaccination, and recorded solicited adverse events in participants who received at least one vaccination but excluding those who already had seroconversion (>10 BAU/mL) at baseline. This study is ongoing and is registered with ClinicalTrials.gov, NCT04715438. FINDINGS: Between Feb 17 and March 12, 2021, 791 participants were enrolled and followed up for a median of 122 days (IQR 118 to 128). A SARS-CoV-2-binding antibody response was found in 240 (100%; 95% CI 98 to 100) of 240 evaluable participants in cohort A, 130 (99%; 96 to >99) of 131 evaluable patients in cohort B, 223 (97%; 94 to 99) of 229 evaluable patients in cohort C, and 143 (100%; 97 to 100) of 143 evaluable patients in cohort D. The SARS-CoV-2-binding antibody response in each patient cohort was non-inferior compared with cohort A. No new safety signals were observed. Grade 3 or worse serious adverse events occurred in no participants in cohort A, three (2%) of 137 patients in cohort B, six (2%) of 244 patients in cohort C, and one (1%) of 163 patients in cohort D, with four events (two of fever, and one each of diarrhoea and febrile neutropenia) potentially related to the vaccination. There were no vaccine-related deaths. INTERPRETATION: Most patients with cancer develop, while receiving chemotherapy, immunotherapy, or both for a solid tumour, an adequate antibody response to vaccination with the mRNA-1273 COVID-19 vaccine. The vaccine is also safe in these patients. The minority of patients with an inadequate response after two vaccinations might benefit from a third vaccination. FUNDING: ZonMw, The Netherlands Organisation for Health Research and Development.


Subject(s)
/adverse effects , Antineoplastic Agents/immunology , Immunotherapy , Neoplasms/therapy , Vaccination/adverse effects , /administration & dosage , Aged , Antibodies, Viral/blood , Antineoplastic Agents/therapeutic use , COVID-19/prevention & control , Cohort Studies , Combined Modality Therapy , Female , Humans , Immunogenicity, Vaccine , Immunomodulation , Injections, Intramuscular , Interferon-gamma/metabolism , Male , Middle Aged , Neoplasms/immunology , Netherlands , Prospective Studies , SARS-CoV-2/immunology , Surveys and Questionnaires
18.
EuropePMC; 2021.
Preprint in English | EuropePMC | ID: ppcovidwho-295246

ABSTRACT

Over the course of the COVID-19 pandemic in 2020-2021, monitoring of SARS-CoV-2 RNA in wastewater has rapidly evolved into a supplementary surveillance instrument for public health. Short term trends (2 weeks) are used as a basis for policy and decision making on measures for dealing with the pandemic. Normalization is required to account for the varying dilution rates of the domestic wastewater, that contains the shedded virus RNA. The dilution rate varies due to runoff, industrial discharges and extraneous waters. Three normalization methods using flow, conductivity and CrAssphage, have been investigated on 9 monitoring locations between Sep 2020 and Aug 2021, rendering 1071 24-hour flow-proportional samples. In addition, 221 stool samples have been analyzed to determine the daily CrAssphage load per person. Results show that flow normalization supported by a quality check using conductivity monitoring is the advocated normalization method in case flow monitoring is or can be made available. Although Crassphage shedding rates per person vary greatly, the CrAssphage loads were very consistent over time and space and direct CrAssphage based normalization can be applied reliably for populations of 5600 and above.

19.
EuropePMC; 2021.
Preprint in English | EuropePMC | ID: ppcovidwho-293349

ABSTRACT

Over the course of the COVID-19 pandemic in 2020-2021, monitoring of SARS-CoV-2 RNA in wastewater has rapidly evolved into a supplementary surveillance instrument for public health. Short term trends (2 weeks) are used as a basis for policy and decision making on measures for dealing with the pandemic. Normalization is required to account for the varying dilution rates of the domestic wastewater, that contains the shedded virus RNA. The dilution rate varies due to runoff, industrial discharges and extraneous waters. Three normalization methods using flow, conductivity and CrAssphage, have been investigated on 9 monitoring locations between Sep 2020 and Aug 2021, rendering 1071 24-hour flow-proportional samples. In addition, 221 stool samples have been analyzed to determine the daily CrAssphage load per person. Results show that flow normalization supported by a quality check using conductivity monitoring is the advocated normalization method in case flow monitoring is or can be made available. Although Crassphage shedding rates per person vary greatly, the CrAssphage loads were very consistent over time and space and direct CrAssphage based normalization can be applied reliably for populations of 5600 and above.

20.
Emerg Microbes Infect ; 11(1): 91-94, 2022 Dec.
Article in English | MEDLINE | ID: covidwho-1541488

ABSTRACT

In order to assess the risk of SARS-CoV-2 infection, transmission and reservoir development in swine, we combined results of an experimental and two observational studies. First, intranasal and intratracheal challenge of eight pigs did not result in infection, based on clinical signs and PCR on swab and lung tissue samples. Two serum samples returned a low positive result in virus neutralization, in line with findings in other infection experiments in pigs. Next, a retrospective observational study was performed in the Netherlands in the spring of 2020. Serum samples (N =417) obtained at slaughter from 17 farms located in a region with a high human case incidence in the first wave of the pandemic. Samples were tested with protein micro array, plaque reduction neutralization test and receptor-binding-domain ELISA. None of the serum samples was positive in all three assays, although six samples from one farm returned a low positive result in PRNT (titers 40-80). Therefore we conclude that serological evidence for large scale transmission was not observed. Finally, an outbreak of respiratory disease in pigs on one farm, coinciding with recent exposure to SARS-CoV-2 infected animal caretakers, was investigated. Tonsil swabs and paired serum samples were tested. No evidence for infection with SARS-CoV-2 was found. In conclusion, Although in both the experimental and the observational study few samples returned low antibody titer results in PRNT infection with SARS-CoV-2 was not confirmed. It was concluded that sporadic infections in the field cannot be excluded, but large-scale SARS-CoV-2 transmission among pigs is unlikely.


Subject(s)
COVID-19/veterinary , SARS-CoV-2/physiology , Swine Diseases/epidemiology , Swine Diseases/transmission , Swine Diseases/virology , Animals , Environmental Exposure , Netherlands/epidemiology , Public Health Surveillance , Retrospective Studies , Swine
SELECTION OF CITATIONS
SEARCH DETAIL