Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
1.
JCI Insight ; 2022 Mar 29.
Article in English | MEDLINE | ID: covidwho-1765224

ABSTRACT

Transplant recipients exhibit an impaired protective immunity after SARS-CoV-2 vaccination, potentially caused by mycophenolate (MPA) immunosuppression. Recent data from autoimmune patients suggest that temporary MPA hold might significantly improve booster vaccination outcomes. We applied a fourth dose of SARS-CoV-2 vaccine to 29 kidney transplant recipients during temporary (5 weeks) MPA (n=28)/azathioprine (n=1) hold, who had not mounted a humoral immune-response to previous vaccinations. Seroconversion until day 32 after vaccination was observed in 76% of patients, associated with acquisition of virus neutralizing capacity. Interestingly, 21/25 (84%) CNI-treated patients responded, but only 1/4 Belatacept-treated patients. In line with humoral responses, counts and relative frequencies of spike receptor binding domain (RBD) specific B cells were significantly increased on day 7 after vaccination, with an increase in RBD specific CD27++CD38+ plasmablasts. Whereas overall proportions of spike-reactive CD4+ T cells remained unaltered after the fourth dose, frequencies were positively correlated with specific IgG levels. Importantly, antigen-specific proliferating Ki67+ and in vivo activated PD1+ T cells significantly increased after re-vaccination during MPA hold, whereas cytokine production and memory differentiation remained unaffected. In summary, antimetabolite hold augmented all arms of immunity during booster vaccination. These data suggest further studies of MMF hold in KTR.

2.
Arthritis Rheumatol ; 2021 Dec 28.
Article in English | MEDLINE | ID: covidwho-1589171

ABSTRACT

OBJECTIVES: Patients with autoimmune inflammatory rheumatic diseases receiving rituximab (RTX) therapy are at higher risk for poor COVID-19 outcomes and show substantially impaired humoral anti-SARS-CoV-2 vaccine responses. However, the complex relationship between antigen-specific B and T cells and the level of B cell repopulation necessary to achieve anti-vaccine responses remain largely unknown. METHODS: Antibody responses to SARS-CoV-2 vaccines and induction of antigen-specific B and CD4/CD8 T cell subsets were studied in 19 rheumatoid arthritis (RA) and ANCA-associated vasculitis (AAV) patients receiving RTX, 12 RA patients on other therapies and 30 healthy controls after SARS-CoV-2 vaccination with either mRNA or vector based vaccines. RESULTS: A minimum of 10 B cells/µL (0,4% of lymphocytes) in the peripheral circulation appeared to be required in RTX patients to mount seroconversion to anti-S1 IgG upon SARS-CoV-2 vaccination. RTX patients lacking IgG seroconversion showed reduced RBD+ B cells, lower frequency of TfH-like cells as well as less activated CD4 and CD8 T cells compared to IgG seroconverted RTX patients. Functionally relevant B cell depletion resulted in impaired IFNγ secretion by spike-specific CD4 T cells. In contrast, antigen-specific CD8 T cells were reduced in patients, independently of IgG formation. CONCLUSIONS: In patients receiving RTX, a minimum of 10 B cells/µl in the peripheral circulation candidates as biomarker for a high likelihood of an appropriate cellular and humoral response after SARS-CoV-2 vaccination. Mechanistically, the data emphasize the crucial role of co-stimulatory B cell functions for the proper induction of CD4 responses propagating vaccine-specific B and plasma cell differentiation.

3.
J Am Soc Nephrol ; 2021 10 19.
Article in English | MEDLINE | ID: covidwho-1566580

ABSTRACT

Background: Accumulating evidence suggests that solid organ transplant recipients, as opposed to the general population, show strongly impaired responsiveness towards standard SARS-CoV-2 mRNA-based vaccination, demanding alternative strategies for protection of this vulnerable group. Methods: In line with recent recommendations, a third dose of either heterologous ChAdOx1 (AstraZeneca) or homologous BNT162b2 (BioNTech) was administered to 25 kidney transplant recipients (KTR) without humoral response after 2 doses of BNT162b2, followed by analysis of serological responses and vaccine-specific B- and T-cell immunity. Results: 9/25 (36%) KTR under standard immunosuppressive treatment seroconverted until day 27 after the third vaccination, while one patient developed severe COVID-19 infection immediately after vaccination. Cellular analysis seven days after the third dose showed significantly elevated frequencies of viral spike protein receptor binding domain specific B cells in humoral responders as compared to non-responders. Likewise, portions of spike-reactive CD4+ T helper cells were significantly elevated in seroconverting patients. Furthermore, overall frequencies of IL-2+, IL-4+ and polyfunctional CD4+ T cells significantly increased after the third dose, whereas memory/effector differentiation remained unaffected. Conclusions: Our data suggest that a fraction of transplant recipients benefits from triple vaccination, where seroconversion is associated with quantitative and qualitative changes of cellular immunity. At the same time, the study highlights that modified vaccination approaches for immunosuppressed patients still remain an urgent medical need.

4.
Sci Immunol ; 6(60)2021 06 15.
Article in English | MEDLINE | ID: covidwho-1369380

ABSTRACT

Patients with kidney failure are at increased risk for SARS-CoV-2 infection making effective vaccinations a critical need. It is not known how well mRNA vaccines induce B and plasma cell responses in dialysis patients (DP) or kidney transplant recipients (KTR) compared to healthy controls (HC). We studied humoral and B cell responses of 35 HC, 44 DP and 40 KTR. Markedly impaired anti-BNT162b2 responses were identified among KTR and DP compared to HC. In DP, the response was delayed (3-4 weeks after boost) and reduced with anti-S1 IgG and IgA positivity in 70.5% and 68.2%, respectively. In contrast, KTR did not develop IgG responses except one patient who had a prior unrecognized infection and developed anti-S1 IgG. The majority of antigen-specific B cells (RBD+) were identified in the plasmablast or post-switch memory B cell compartments in HC, whereas RBD+ B cells were enriched among pre-switch and naïve B cells from DP and KTR. The frequency and absolute number of antigen-specific circulating plasmablasts in the cohort correlated with the Ig response, a characteristic not reported for other vaccinations. In conclusion, these data indicated that immunosuppression resulted in impaired protective immunity after mRNA vaccination, including Ig induction with corresponding generation of plasmablasts and memory B cells. Thus, there is an urgent need to improve vaccination protocols in patients after kidney transplantation or on chronic dialysis.


Subject(s)
Antibodies, Viral/blood , COVID-19 Vaccines/immunology , COVID-19/prevention & control , Immunocompromised Host , Kidney Transplantation , Adult , Aged , Aged, 80 and over , Antibodies, Viral/immunology , COVID-19/immunology , Female , Humans , Immunity, Humoral/drug effects , Immunity, Humoral/immunology , Male , Middle Aged , Renal Dialysis , SARS-CoV-2 , Transplant Recipients
5.
Front Immunol ; 12: 690698, 2021.
Article in English | MEDLINE | ID: covidwho-1317227

ABSTRACT

Patients with kidney failure have notoriously weak responses to common vaccines. Thus, immunogenicity of novel SARS-CoV-2 vaccines might be impaired in this group. To determine immunogenicity of SARS-CoV-2 vaccination in patients with chronic dialysis, we analyzed the humoral and T-cell response after two doses of mRNA vaccine Tozinameran (BNT162b2 BioNTech/Pfizer). This observational study included 43 patients on dialysis before vaccination with two doses of Tozinameran 21 days apart. Overall, 36 patients completed the observation period until three weeks after the second dose and 32 patients were further analyzed at week 10. Serum samples were analyzed by SARS-CoV-2 specific IgG and IgA antibodies ~1, ~3-4 and ~10 weeks after the second vaccination. In addition, SARS-CoV-2-specific T-cell responses were assessed at ~3-4 weeks by an interferon-gamma release assay (IGRA). Antibody and T cell outcomes at this timepoint were compared to a group of 44 elderly patients not on dialysis, after immunization with Tozinameran. Median age of patients on chronic dialysis was 74.0 years (IQR 66.0, 82.0). The proportion of males was higher (69.4%) than females. Only 20/36 patients (55.6%, 95%CI: 38.29-71.67) developed SARS-CoV-2-IgG antibodies at the first sampling, whereas 32/36 patients (88.9%, 95%CI: 73.00-96.38) demonstrated IgG detection at the second sampling. In a longitudinal follow-up at ~10 weeks after the second dose, the proportion of dialysis patients reactive for anti-SARS-CoV-2-IgG decreased to 27/32 (84.37%, 95%CI: 66.46-94.10) The proportion of anti-SARS-CoV-2 S1 IgA decreased from 33/36 (91.67%; 95%CI: 76.41-97.82) at weeks 3-4 down to 19/32 (59.38; 95%CI: 40.79-75.78). Compared to a cohort of vaccinees with similar age but not on chronic dialysis seroconversion rates and antibody titers were significantly lower. SARS-CoV-2-specific T-cell responses 3 weeks after second vaccination were detected in 21/31 vaccinated dialysis patients (67.7%, 95%CI: 48.53-82.68) compared to 42/44 (93.3%, 95%CI: 76.49-98.84) in controls of similar age. Patients on dialysis demonstrate a delayed, but robust immune response three to four weeks after the second dose, which indicates effective vaccination of this vulnerable group. However, the lower immunogenicity of Tozinameran in these patients needs further attention to develop potential countermeasures such as an additional booster vaccination.


Subject(s)
COVID-19 Vaccines/immunology , COVID-19/prevention & control , Immunogenicity, Vaccine , Renal Dialysis , SARS-CoV-2/immunology , Vaccination/methods , Aged , Aged, 80 and over , Antibodies, Neutralizing/blood , Antibodies, Viral/blood , COVID-19/blood , COVID-19/virology , Female , Follow-Up Studies , Humans , Immunity , Immunoglobulin A/blood , Immunoglobulin G/blood , Longitudinal Studies , Male , Middle Aged , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/immunology , T-Lymphocytes/immunology
6.
J Clin Invest ; 131(14)2021 07 15.
Article in English | MEDLINE | ID: covidwho-1311203

ABSTRACT

Novel mRNA-based vaccines have been proven to be powerful tools in combating the global pandemic caused by SARS-CoV-2, with BNT162b2 (trade name: Comirnaty) efficiently protecting individuals from COVID-19 across a broad age range. Still, it remains largely unknown how renal insufficiency and immunosuppressive medication affect development of vaccine-induced immunity. We therefore comprehensively analyzed humoral and cellular responses in kidney transplant recipients after the standard second vaccination dose. As opposed to all healthy vaccinees and the majority of hemodialysis patients, only 4 of 39 and 1 of 39 transplanted individuals showed IgA and IgG seroconversion at day 8 ± 1 after booster immunization, with minor changes until day 23 ± 5, respectively. Although most transplanted patients mounted spike-specific T helper cell responses, frequencies were significantly reduced compared with those in controls and dialysis patients and this was accompanied by a broad impairment in effector cytokine production, memory differentiation, and activation-related signatures. Spike-specific CD8+ T cell responses were less abundant than their CD4+ counterparts in healthy controls and hemodialysis patients and almost undetectable in transplant patients. Promotion of anti-HLA antibodies or acute rejection was not detected after vaccination. In summary, our data strongly suggest revised vaccination approaches in immunosuppressed patients, including individual immune monitoring for protection of this vulnerable group at risk of developing severe COVID-19.


Subject(s)
COVID-19 Vaccines/administration & dosage , COVID-19/immunology , COVID-19/prevention & control , Kidney Transplantation/adverse effects , SARS-CoV-2 , Adult , Aged , Antibodies, Viral/biosynthesis , COVID-19 Vaccines/immunology , Case-Control Studies , Cohort Studies , Cytokines/immunology , Female , Humans , Immunity, Cellular , Immunity, Humoral , Immunization, Secondary , Immunoglobulin A/biosynthesis , Immunoglobulin G/biosynthesis , Immunologic Memory , Immunosuppressive Agents/adverse effects , Lymphocyte Activation , Male , Middle Aged , Monitoring, Immunologic , Renal Dialysis/adverse effects , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/immunology , T-Lymphocytes/immunology , Transplantation Immunology
7.
Journal of Clinical Investigation ; 130(12):6477-6489, 2020.
Article in English | ProQuest Central | ID: covidwho-1021205

ABSTRACT

Coronavirus disease 2019 (COVID-19) has emerged as a global pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). So far, viral targets of cellular immunity and factors determining successful mounting of T cell responses are poorly defined. We therefore analyzed cellular responses to membrane, nucleocapsid, and spike proteins in individuals suffering from moderate or severe infection and in individuals who recovered from mild disease. We demonstrate that the CoV-2-specific CD4· T helper cell response is directed against all 3 proteins with comparable magnitude, ex vivo proliferation, and portions of responding patients. However, individuals who died were more likely to have not mounted a cellular response to the proteins. Higher patient age and comorbidity index correlated with increased frequencies of CoV-2specific CD4· T cells, harboring higher portions of IL-2-secreting, but lower portions of IFN-y-secreting, cells. Diminished frequencies of membrane protein-reactive IFN-y· T cells were particularly associated with higher acute physiology and chronic health evaluation II scores in patients admitted to intensive care. CoV-2-specific T cells exhibited elevated PD-1 expression in patients with active disease as compared with those individuals who recovered from previous mild disease. In summary, our data suggest a link between individual patient predisposition with respect to age and comorbidity and impairment of CoV-2specific Th1-type cellular immunity, thereby supporting a concept of altered T cell function in at-risk patients.

8.
J Clin Invest ; 130(12): 6477-6489, 2020 12 01.
Article in English | MEDLINE | ID: covidwho-1021209

ABSTRACT

Coronavirus disease 2019 (COVID-19) has emerged as a global pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). So far, viral targets of cellular immunity and factors determining successful mounting of T cell responses are poorly defined. We therefore analyzed cellular responses to membrane, nucleocapsid, and spike proteins in individuals suffering from moderate or severe infection and in individuals who recovered from mild disease. We demonstrate that the CoV-2-specific CD4+ T helper cell response is directed against all 3 proteins with comparable magnitude, ex vivo proliferation, and portions of responding patients. However, individuals who died were more likely to have not mounted a cellular response to the proteins. Higher patient age and comorbidity index correlated with increased frequencies of CoV-2-specific CD4+ T cells, harboring higher portions of IL-2-secreting, but lower portions of IFN-γ-secreting, cells. Diminished frequencies of membrane protein-reactive IFN-γ+ T cells were particularly associated with higher acute physiology and chronic health evaluation II scores in patients admitted to intensive care. CoV-2-specific T cells exhibited elevated PD-1 expression in patients with active disease as compared with those individuals who recovered from previous mild disease. In summary, our data suggest a link between individual patient predisposition with respect to age and comorbidity and impairment of CoV-2-specific Th1-type cellular immunity, thereby supporting a concept of altered T cell function in at-risk patients.


Subject(s)
COVID-19/immunology , Interferon-gamma/immunology , Interleukin-2/immunology , Programmed Cell Death 1 Receptor/immunology , SARS-CoV-2/immunology , Th1 Cells/immunology , Adult , Age Factors , Aged , Aged, 80 and over , COVID-19/pathology , Disease Susceptibility , Female , Humans , Male , Middle Aged , Severity of Illness Index , Th1 Cells/pathology
SELECTION OF CITATIONS
SEARCH DETAIL