Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
EBioMedicine ; 79: 103999, 2022 May.
Article in English | MEDLINE | ID: covidwho-1796985


BACKGROUND: Neurological symptoms such as cognitive decline and depression contribute substantially to post-COVID-19 syndrome, defined as lasting symptoms several weeks after initial SARS-CoV-2 infection. The pathogenesis is still elusive, which hampers appropriate treatment. Neuroinflammatory responses and neurodegenerative processes may occur in absence of overt neuroinvasion. METHODS: Here we determined whether intranasal SARS-CoV-2 infection in male and female syrian golden hamsters results in persistent brain pathology. Brains 3 (symptomatic) or 14 days (viral clearance) post infection versus mock (n = 10 each) were immunohistochemically analyzed for viral protein, neuroinflammatory response and accumulation of tau, hyperphosphorylated tau and alpha-synuclein protein. FINDINGS: Viral protein in the nasal cavity led to pronounced microglia activation in the olfactory bulb beyond viral clearance. Cortical but not hippocampal neurons accumulated hyperphosphorylated tau and alpha-synuclein, in the absence of overt inflammation and neurodegeneration. Importantly, not all brain regions were affected, which is in line with selective vulnerability. INTERPRETATION: Thus, despite the absence of virus in brain, neurons develop signatures of proteinopathies that may contribute to progressive neuronal dysfunction. Further in depth analysis of this important mechanism is required. FUNDING: Federal Ministry of Health (BMG; ZMV I 1-2520COR501), Federal Ministry of Education and Research (BMBF 01KI1723G), Ministry of Science and Culture of Lower Saxony in Germany (14 - 76103-184 CORONA-15/20), German Research Foundation (DFG; 398066876/GRK 2485/1), Luxemburgish National Research Fund (FNR, Project Reference: 15686728, EU SC1-PHE-CORONAVIRUS-2020 MANCO, no > 101003651).

COVID-19 , SARS-CoV-2 , Animals , Brain , COVID-19/complications , Cricetinae , Female , Humans , Inflammation , Male , Neurons , Viral Proteins , alpha-Synuclein , Post-Acute COVID-19 Syndrome
Front Immunol ; 12: 640842, 2021.
Article in English | MEDLINE | ID: covidwho-1207697


Neutrophil extracellular traps (NETs) have been identified as one pathogenetic trigger in severe COVID-19 cases and therefore well-described animal models to understand the influence of NETs in COVID-19 pathogenesis are needed. SARS-CoV-2 infection causes infection and interstitial pneumonia of varying severity in humans and COVID-19 models. Pulmonary as well as peripheral vascular lesions represent a severe, sometimes fatal, disease complication of unknown pathogenesis in COVID-19 patients. Furthermore, neutrophil extracellular traps (NETs), which are known to contribute to vessel inflammation or endothelial damage, have also been shown as potential driver of COVID-19 in humans. Though most studies in animal models describe the pulmonary lesions characterized by interstitial inflammation, type II pneumocyte hyperplasia, edema, fibrin formation and infiltration of macrophages and neutrophils, detailed pathological description of vascular lesions or NETs in COVID-19 animal models are lacking so far. Here we report different types of pulmonary vascular lesions in the golden Syrian hamster model of COVID-19. Vascular lesions included endothelialitis and vasculitis at 3 and 6 days post infection (dpi), and were almost nearly resolved at 14 dpi. Importantly, virus antigen was present in pulmonary lesions, but lacking in vascular alterations. In good correlation to these data, NETs were detected in the lungs of infected animals at 3 and 6 dpi. Hence, the Syrian hamster seems to represent a useful model to further investigate the role of vascular lesions and NETs in COVID-19 pathogenesis.

COVID-19/pathology , Disease Models, Animal , Extracellular Traps/immunology , Lung/pathology , SARS-CoV-2/pathogenicity , Vasculitis/pathology , Animals , COVID-19/immunology , COVID-19/virology , Cricetinae , Lung/immunology , Lung/virology , Mesocricetus , Vasculitis/immunology , Viral Proteins/metabolism
Cell Rep ; 31(3): 107549, 2020 04 21.
Article in English | MEDLINE | ID: covidwho-100496


Importin-α adaptor proteins orchestrate dynamic nuclear transport processes involved in cellular homeostasis. Here, we show that importin-α3, one of the main NF-κB transporters, is the most abundantly expressed classical nuclear transport factor in the mammalian respiratory tract. Importin-α3 promoter activity is regulated by TNF-α-induced NF-κB in a concentration-dependent manner. High-level TNF-α-inducing highly pathogenic avian influenza A viruses (HPAIVs) isolated from fatal human cases harboring human-type polymerase signatures (PB2 627K, 701N) significantly downregulate importin-α3 mRNA expression in primary lung cells. Importin-α3 depletion is restored upon back-mutating the HPAIV polymerase into an avian-type signature (PB2 627E, 701D) that can no longer induce high TNF-α levels. Importin-α3-deficient mice show reduced NF-κB-activated antiviral gene expression and increased influenza lethality. Thus, importin-α3 plays a key role in antiviral immunity against influenza. Lifting the bottleneck in importin-α3 availability in the lung might provide a new strategy to combat respiratory virus infections.

Influenza A virus/immunology , Influenza, Human/immunology , Orthomyxoviridae Infections/immunology , alpha Karyopherins/biosynthesis , A549 Cells , Animals , Cell Line, Tumor , Chlorocebus aethiops , Down-Regulation , Female , HEK293 Cells , Humans , Influenza, Human/genetics , Influenza, Human/virology , Mice , Mice, Inbred C57BL , Mice, Knockout , Middle Aged , Orthomyxoviridae Infections/genetics , Orthomyxoviridae Infections/virology , RNA, Messenger/genetics , RNA, Messenger/metabolism , Vero Cells , alpha Karyopherins/genetics , alpha Karyopherins/immunology