ABSTRACT
BACKGROUND: Treatment options for patients with COVID-19-related acute respiratory distress syndrome (ARDS) are desperately needed. Allogeneic human umbilical cord derived mesenchymal stromal cells (hCT-MSCs) have potential therapeutic benefits in these critically ill patients, but feasibility and safety data are lacking. MATERIALS AND METHODS: In this phase I multisite study, 10 patients with COVID-19-related ARDS were treated with 3 daily intravenous infusions of hCT-MSCs (1 million cells/kg, maximum dose 100 million cells). The primary endpoint assessed safety. RESULTS: Ten patients (7 females, 3 males; median age 62 years (range 39-79)) were enrolled at 2 sites and received a total of 30 doses of study product. The average cell dose was 0.93 cells/kg (range 0.56-1.45 cells/kg and total dose range 55-117 million cells) with 5/30 (17%) of doses lower than intended dose. Average cell viability was 85% (range 63%-99%) with all but one meeting the >70% release criteria. There were no infusion-related reactions or study-related adverse events, 28 non-serious adverse events in 3 unique patients, and 2 serious adverse events in 2 unique patients, which were expected and unrelated to the study product. Five patients died: 3 by day 28 and 5 by day 90 of the study (median 27 days, range 7-76 days). All deaths were determined to be unrelated to the hCT-MSCs. CONCLUSION: We were able to collect relevant safety outcomes for the use of hCT-MSCs in patients with COVID-19-related ARDS. Future studies to explore their safety and efficacy are warranted.
Subject(s)
COVID-19 , Mesenchymal Stem Cell Transplantation , Mesenchymal Stem Cells , Respiratory Distress Syndrome , Male , Female , Humans , Adult , Middle Aged , Aged , COVID-19/therapy , COVID-19/etiology , Feasibility Studies , Mesenchymal Stem Cell Transplantation/adverse effects , Respiratory Distress Syndrome/etiology , Respiratory Distress Syndrome/therapyABSTRACT
The timing of initiating mechanical ventilation in patients with acute respiratory distress syndrome due to COVID-19 remains controversial. At the outset of the pandemic, "very early" intubation was recommended in patients requiring oxygen flows above 6 L per minute but was followed closely thereafter by avoidance of invasive mechanical ventilation (IMV) due to a perceived (yet over-estimated) risk of mortality after intubation. While the use of noninvasive methods of oxygen delivery, such as high-flow nasal oxygen (HFNO) or noninvasive positive pressure ventilation (NIV), can avert the need for mechanical ventilation in some, accumulating evidence suggests delayed intubation is also associated with an increased mortality in a subset of COVID-19 patients. Close monitoring is necessary in COVID-19 patients on HFNO or NIV to identify signs of noninvasive failure and ensure appropriate provision of IMV.
ABSTRACT
OBJECTIVES: The COVID-19 pandemic has claimed over eight hundred thousand lives in the United States alone, with older individuals and those with comorbidities being at higher risk of severe disease and death. Although severe acute respiratory syndrome coronavirus 2–induced hyperinflammation is one of the mechanisms underlying the high mortality, the association between age and innate immune responses in COVID-19 mortality remains unclear. DESIGN: Flow cytometry of fresh blood and multiplexed inflammatory chemokine measurements of sera were performed on samples collected longitudinally from our cohort. Aggregate impact of comorbid conditions was calculated with the Charlson Comorbidity Index, and association between patient factors and outcomes was calculated via Cox proportional hazard analysis and repeated measures analysis of variance. SETTING: A cohort of severely ill COVID-19 patients requiring ICU admission was followed prospectively. PATIENTS: In total, 67 patients (46 male, age 59 ± 14 yr) were included in the study. INTERVENTIONS: None. MEASUREMENTS AND MAIN RESULTS: Mortality in our cohort was 41.8%. We identified older age (hazard ratio [HR] 1.09 [95% CI 1.07–1.11];p = 0.001), higher comorbidity index (HR 1.24 [95% CI 1.14–1.35];p = 0.039), and hyponatremia (HR 0.90 [95% CI 0.82–0.99];p = 0.026) to each independently increase risk for death in COVID-19. We also found that neutrophilia (R = 0.2;p = 0.017), chemokine C-C motif ligand (CCL) 2 (R = 0.3;p = 0.043), and C-X-C motif chemokine ligand 9 (CXCL9) (R = 0.3;p = 0.050) were weakly but significantly correlated with mortality. Older age was associated with lower monocyte (R = –0.2;p = 0.006) and cluster of differentiation (CD) 16+ cell counts (R = –0.2;p = 0.002) and increased CCL11 concentration (R = 0.3;p = 0.050). Similarly, younger patients (< 65 yr) demonstrated a rise in CD4 (b-coefficient = 0.02;p = 0.036) and CD8 (0.01;p = 0.001) counts, as well as CCL20 (b-coefficient = 6.8;p = 0.036) during their ICU stay. This CD8 count rise was also associated with survival (b-coefficient = 0.01;p = 0.023). CONCLUSIONS: Age, comorbidities, and hyponatremia independently predict mortality in severe COVID-19. Neutrophilia and higher CCL2 and CXCL9 levels are also associated with higher mortality, while independent of age.
ABSTRACT
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Omicron BA.2 sub-lineage has gained in proportion relative to BA.1. Because spike (S) protein variations may underlie differences in their pathobiology, here we determine cryoelectron microscopy (cryo-EM) structures of the BA.2 S ectodomain and compare these with previously determined BA.1 S structures. BA.2 receptor-binding domain (RBD) mutations induce remodeling of the RBD structure, resulting in tighter packing and improved thermostability. Interprotomer RBD interactions are enhanced in the closed (or 3-RBD-down) BA.2 S, while the fusion peptide is less accessible to antibodies than in BA.1. Binding and pseudovirus neutralization assays reveal extensive immune evasion while defining epitopes of two outer RBD face-binding antibodies, DH1044 and DH1193, that neutralize both BA.1 and BA.2. Taken together, our results indicate that stabilization of the closed state through interprotomer RBD-RBD packing is a hallmark of the Omicron variant and show differences in key functional regions in the BA.1 and BA.2 S proteins.
Subject(s)
COVID-19 , SARS-CoV-2 , Antibodies, Viral , Cryoelectron Microscopy , Humans , Receptors, Virus/metabolism , Spike Glycoprotein, CoronavirusABSTRACT
SARS-CoV-2 infection triggers profound and variable immune responses in human hosts. Chromatin remodeling has been observed in individuals severely ill or convalescing with COVID-19, but chromatin remodeling early in disease prior to anti-spike protein IgG seroconversion has not been defined. We performed the Assay for Transposase-Accessible Chromatin using sequencing (ATAC-seq) and RNA-seq on peripheral blood mononuclear cells (PBMCs) from outpatients with mild or moderate symptom severity at different stages of clinical illness. Early in the disease course prior to IgG seroconversion, modifications in chromatin accessibility associated with mild or moderate symptoms were already robust and included severity-associated changes in accessibility of genes in interleukin signaling, regulation of cell differentiation and cell morphology. Furthermore, single-cell analyses revealed evolution of the chromatin accessibility landscape and transcription factor motif accessibility for individual PBMC cell types over time. The most extensive remodeling occurred in CD14+ monocytes, where sub-populations with distinct chromatin accessibility profiles were observed prior to seroconversion. Mild symptom severity was marked by upregulation of classical antiviral pathways, including those regulating IRF1 and IRF7, whereas in moderate disease, these classical antiviral signals diminished, suggesting dysregulated and less effective responses. Together, these observations offer novel insight into the epigenome of early mild SARS-CoV-2 infection and suggest that detection of chromatin remodeling in early disease may offer promise for a new class of diagnostic tools for COVID-19.
Subject(s)
COVID-19 , Chromatin , Antiviral Agents , COVID-19/genetics , Chromatin/genetics , Humans , Immunoglobulin G/genetics , Leukocytes, Mononuclear , SARS-CoV-2 , Seroconversion , Severity of Illness IndexABSTRACT
Known limitations of unfractionated heparin (UFH) have encouraged the evaluation of anticoagulant aptamers as alternatives to UFH in highly procoagulant settings such as cardiopulmonary bypass (CPB). Despite progress, these efforts have not been totally successful. We take a different approach and explore whether properties of an anticoagulant aptamer can complement UFH, rather than replace it, to address shortcomings with UFH use. Combining RNA aptamer 11F7t, which targets factor X/Xa, with UFH (or low molecular weight heparin) yields a significantly enhanced anticoagulant cocktail effective in normal and COVID-19 patient blood. This aptamer-UFH combination (1) supports continuous circulation of human blood through an ex vivo membrane oxygenation circuit, as is required for patients undergoing CPB and COVID-19 patients requiring extracorporeal membrane oxygenation, (2) allows for a reduced level of UFH to be employed, (3) more effectively limits thrombin generation compared to UFH alone, and (4) is rapidly reversed by the administration of protamine sulfate, the standard treatment for reversing UFH clinically following CPB. Thus, the combination of factor X/Xa aptamer and UFH has significantly improved anticoagulant properties compared to UFH alone and underscores the potential of RNA aptamers to improve medical management of acute care patients requiring potent yet rapidly reversible anticoagulation.
Subject(s)
Aptamers, Nucleotide , COVID-19 , Anticoagulants/pharmacology , Anticoagulants/therapeutic use , Aptamers, Nucleotide/genetics , Aptamers, Nucleotide/pharmacology , Aptamers, Nucleotide/therapeutic use , Cardiopulmonary Bypass/adverse effects , Factor X , Heparin , Humans , ThrombinABSTRACT
Millions of COVID-19 patients have succumbed to respiratory and systemic inflammation. Hyperstimulation of toll-like receptor (TLR) signaling is a key driver of immunopathology following infection by viruses. We found that severely ill COVID-19 patients in the Intensive Care Unit (ICU) display hallmarks of such hyper-stimulation with abundant agonists of nucleic acid-sensing TLRs present in their blood and lungs. These nucleic acid-containing Damage and Pathogen Associated Molecular Patterns (DAMPs/PAMPs) can be depleted using nucleic acid-binding microfibers to limit the patient samples' ability to hyperactivate such innate immune receptors. Single-cell RNA-sequencing revealed that CD16+ monocytes from deceased but not recovered ICU patients exhibit a TLR-tolerant phenotype and a deficient anti-viral response after ex vivo TLR stimulation. Plasma proteomics confirmed such myeloid hyperactivation and revealed DAMP/PAMP carrier consumption in deceased patients. Treatment of these COVID-19 patient samples with MnO nanoparticles effectively neutralizes TLR activation by the abundant nucleic acid-containing DAMPs/PAMPs present in their lungs and blood. Finally, MnO nanoscavenger treatment limits the ability of DAMPs/PAMPs to induce TLR tolerance in monocytes. Thus, treatment with microfiber- or nanoparticle-based DAMP/PAMP scavengers may prove useful for limiting SARS-CoV-2 induced hyperinflammation, preventing monocytic TLR tolerance, and improving outcomes in severely ill COVID-19 patients.
Subject(s)
COVID-19 , Nucleic Acids , Humans , Pathogen-Associated Molecular Pattern Molecules , SARS-CoV-2 , Toll-Like ReceptorsABSTRACT
B Methods: b A prospective cohort study of severely ill COVID-19 patients requiring ICU level care was performed to assess the contributions of age, comorbidities, and innate immune response on mortality. B Introduction/Hypothesis: b Although, SARS-CoV-2-induced hyperinflammation is one of the mechanisms underlying this severe mortality, the association between age and innate immune response in COVID-19 mortality remains unclear. [Extracted from the article] Copyright of Critical Care Medicine is the property of Lippincott Williams & Wilkins and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full . (Copyright applies to all s.)
ABSTRACT
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants are concerning in the ongoing coronavirus disease 2019 (COVID-19) pandemic. Here, we developed a rapid test, termed CoVariant-SCAN, that detects neutralizing antibodies (nAbs) capable of blocking interactions between the angiotensin-converting enzyme 2 receptor and the spike protein of wild-type (WT) SARS-CoV-2 and three other variants: B.1.1.7, B.1.351, and P.1. Using CoVariant-SCAN, we assessed neutralization/blocking of monoclonal antibodies and plasma from COVID-19positive and vaccinated individuals. For several monoclonal antibodies and most plasma samples, neutralization against B.1.351 and P.1 variants is diminished relative to WT, while B.1.1.7 is largely cross-neutralized. We also showed that we can rapidly adapt the platform to detect nAbs against an additional variantB.1.617.2 (Delta)without reengineering or reoptimizing the assay. Results using CoVariant-SCAN are consistent with live virus neutralization assays and demonstrate that this easy-to-deploy test could be used to rapidly assess nAb response against multiple SARS-CoV-2 variants.
ABSTRACT
BACKGROUNDIndividuals recovering from COVID-19 frequently experience persistent respiratory ailments, which are key elements of postacute sequelae of SARS-CoV-2 infection (PASC); however, little is known about the underlying biological factors that may direct lung recovery and the extent to which these are affected by COVID-19 severity.METHODSWe performed a prospective cohort study of individuals with persistent symptoms after acute COVID-19, collecting clinical data, pulmonary function tests, and plasma samples used for multiplex profiling of inflammatory, metabolic, angiogenic, and fibrotic factors.RESULTSSixty-one participants were enrolled across 2 academic medical centers at a median of 9 weeks (interquartile range, 6-10 weeks) after COVID-19 illness: n = 13 participants (21%) had mild COVID-19 and were not hospitalized, n = 30 participants (49%) were hospitalized but were considered noncritical, and n = 18 participants (30%) were hospitalized and in the intensive care unit (ICU). Fifty-three participants (85%) had lingering symptoms, most commonly dyspnea (69%) and cough (58%). Forced vital capacity (FVC), forced expiratory volume in 1 second (FEV1), and diffusing capacity for carbon monoxide (DLCO) declined as COVID-19 severity increased (P < 0.05) but these values did not correlate with respiratory symptoms. Partial least-squares discriminant analysis of plasma biomarker profiles clustered participants by past COVID-19 severity. Lipocalin-2 (LCN2), MMP-7, and HGF identified by our analysis were significantly higher in the ICU group (P < 0.05), inversely correlated with FVC and DLCO (P < 0.05), and were confirmed in a separate validation cohort (n = 53).CONCLUSIONSubjective respiratory symptoms are common after acute COVID-19 illness but do not correlate with COVID-19 severity or pulmonary function. Host response profiles reflecting neutrophil activation (LCN2), fibrosis signaling (MMP-7), and alveolar repair (HGF) track with lung impairment and may be novel therapeutic or prognostic targets.FundingNational Heart, Lung, and Blood Institute (K08HL130557 and R01HL142818), American Heart Association (Transformational Project Award), the DeLuca Foundation Award, a donation from Jack Levin to the Benign Hematology Program at Yale University, and Duke University.
Subject(s)
COVID-19/complications , Hepatocyte Growth Factor/analysis , Lipocalin-2/analysis , Matrix Metalloproteinase 7/analysis , Pulmonary Fibrosis , Respiratory Function Tests , COVID-19/diagnosis , COVID-19/immunology , COVID-19/physiopathology , Cough/diagnosis , Cough/etiology , Dyspnea/diagnosis , Dyspnea/etiology , Female , Humans , Lung/metabolism , Lung/pathology , Lung/physiopathology , Male , Middle Aged , Neutrophil Activation/immunology , Prognosis , Pulmonary Fibrosis/diagnosis , Pulmonary Fibrosis/etiology , Pulmonary Fibrosis/metabolism , Recovery of Function/immunology , Respiratory Function Tests/methods , Respiratory Function Tests/statistics & numerical data , SARS-CoV-2 , Severity of Illness Index , Post-Acute COVID-19 SyndromeABSTRACT
Initially thought to be a primarily respiratory disease process, the hypercoagulable state associated with COVID-19 has been associated with myriad clinical sequelae. We report a case of stuttering ischemic priapism associated with COVID-19, and describe a management approach to achieve detumescence in patients undergoing ventilatory proning limiting penile access.Level of evidence: Not applicable for this single center case report.
ABSTRACT
Highly sensitive, specific, and point-of-care (POC) serological assays are an essential tool to manage coronavirus disease 2019 (COVID-19). Here, we report on a microfluidic POC test that can profile the antibody response against multiple severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) antigens-spike S1 (S1), nucleocapsid (N), and the receptor binding domain (RBD)-simultaneously from 60 µl of blood, plasma, or serum. We assessed the levels of antibodies in plasma samples from 31 individuals (with longitudinal sampling) with severe COVID-19, 41 healthy individuals, and 18 individuals with seasonal coronavirus infections. This POC assay achieved high sensitivity and specificity, tracked seroconversion, and showed good concordance with a live virus microneutralization assay. We can also detect a prognostic biomarker of severity, IP-10 (interferon-γ-induced protein 10), on the same chip. Because our test requires minimal user intervention and is read by a handheld detector, it can be globally deployed to combat COVID-19.
Subject(s)
COVID-19 Serological Testing/methods , COVID-19/diagnosis , Point-of-Care Testing , SARS-CoV-2/immunology , Antibodies, Viral/blood , Antibodies, Viral/immunology , COVID-19/blood , COVID-19/virology , COVID-19 Serological Testing/instrumentation , Humans , Reproducibility of Results , SARS-CoV-2/metabolism , SARS-CoV-2/physiology , Sensitivity and Specificity , Spike Glycoprotein, Coronavirus/immunology , Spike Glycoprotein, Coronavirus/metabolismABSTRACT
The role of concurrent illness in coronavirus disease 2019 (COVID-19) is unknown. Patients with leukemia may display altered thromboinflammatory responses. We report a 53-year-old man presenting with acute leukemia and COVID-19 who developed thrombotic complications and acute respiratory distress syndrome. Multiple analyses, including rotational thromboelastometry and flow cytometry on blood and bronchoalveolar lavage, are reported to characterize coagulation and immune profiles. The patient developed chemotherapy-induced neutropenia that may have protected his lungs from granulocyte-driven hyperinflammatory acute lung injury. However, neutropenia also alters viral clearing, potentially enabling ongoing viral propagation. This case depicts a precarious equilibrium between leukemia and COVID-19.
Subject(s)
Acute Lung Injury/complications , Blood Coagulation Disorders/complications , Blood Coagulation Disorders/pathology , COVID-19/complications , COVID-19/pathology , Leukemia, Myeloid, Acute/complications , Acute Lung Injury/diagnosis , Acute Lung Injury/pathology , Blood Coagulation Disorders/diagnosis , Bronchoalveolar Lavage , COVID-19/diagnosis , Flow Cytometry , Humans , Leukemia, Myeloid, Acute/diagnosis , Leukemia, Myeloid, Acute/pathology , Male , Middle Aged , Neutropenia/complications , Neutropenia/diagnosis , Neutropenia/pathology , SARS-CoV-2 , Thrombelastography , Virulence FactorsABSTRACT
SARS-CoV-2 infection has been shown to trigger a wide spectrum of immune responses and clinical manifestations in human hosts. Here, we sought to elucidate novel aspects of the host response to SARS-CoV-2 infection through RNA sequencing of peripheral blood samples from 46 subjects with COVID-19 and directly comparing them to subjects with seasonal coronavirus, influenza, bacterial pneumonia, and healthy controls. Early SARS-CoV-2 infection triggers a powerful transcriptomic response in peripheral blood with conserved components that are heavily interferon-driven but also marked by indicators of early B-cell activation and antibody production. Interferon responses during SARS-CoV-2 infection demonstrate unique patterns of dysregulated expression compared to other infectious and healthy states. Heterogeneous activation of coagulation and fibrinolytic pathways are present in early COVID-19, as are IL1 and JAK/STAT signaling pathways, which persist into late disease. Classifiers based on differentially expressed genes accurately distinguished SARS-CoV-2 infection from other acute illnesses (auROC 0.95 [95% CI 0.92-0.98]). The transcriptome in peripheral blood reveals both diverse and conserved components of the immune response in COVID-19 and provides for potential biomarker-based approaches to diagnosis.