Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 5 de 5
J Allergy Clin Immunol ; 149(3): 923-933.e6, 2022 03.
Article in English | MEDLINE | ID: covidwho-1560006


BACKGROUND: Treatments for coronavirus disease 2019, which is caused by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), are urgently needed but remain limited. SARS-CoV-2 infects cells through interactions of its spike (S) protein with angiotensin-converting enzyme 2 (ACE2) and transmembrane protease serine 2 (TMPRSS2) on host cells. Multiple cells and organs are targeted, particularly airway epithelial cells. OM-85, a standardized lysate of human airway bacteria with strong immunomodulating properties and an impeccable safety profile, is widely used to prevent recurrent respiratory infections. We found that airway OM-85 administration inhibits Ace2 and Tmprss2 transcription in the mouse lung, suggesting that OM-85 might hinder SARS-CoV-2/host cell interactions. OBJECTIVES: We sought to investigate whether and how OM-85 treatment protects nonhuman primate and human epithelial cells against SARS-CoV-2. METHODS: ACE2 and TMPRSS2 mRNA and protein expression, cell binding of SARS-CoV-2 S1 protein, cell entry of SARS-CoV-2 S protein-pseudotyped lentiviral particles, and SARS-CoV-2 cell infection were measured in kidney, lung, and intestinal epithelial cell lines, primary human bronchial epithelial cells, and ACE2-transfected HEK293T cells treated with OM-85 in vitro. RESULTS: OM-85 significantly downregulated ACE2 and TMPRSS2 transcription and surface ACE2 protein expression in epithelial cell lines and primary bronchial epithelial cells. OM-85 also strongly inhibited SARS-CoV-2 S1 protein binding to, SARS-CoV-2 S protein-pseudotyped lentivirus entry into, and SARS-CoV-2 infection of epithelial cells. These effects of OM-85 appeared to depend on SARS-CoV-2 receptor downregulation. CONCLUSIONS: OM-85 inhibits SARS-CoV-2 epithelial cell infection in vitro by downregulating SARS-CoV-2 receptor expression. Further studies are warranted to assess whether OM-85 may prevent and/or reduce the severity of coronavirus disease 2019.

Adjuvants, Immunologic/administration & dosage , COVID-19/prevention & control , Cell Extracts/administration & dosage , Receptors, Virus/antagonists & inhibitors , Receptors, Virus/immunology , SARS-CoV-2/immunology , Angiotensin-Converting Enzyme 2/antagonists & inhibitors , Angiotensin-Converting Enzyme 2/genetics , Angiotensin-Converting Enzyme 2/immunology , Animals , COVID-19/immunology , COVID-19/virology , Caco-2 Cells , Cell Extracts/immunology , Cells, Cultured , Chlorocebus aethiops , Down-Regulation/drug effects , Epithelial Cells/drug effects , Epithelial Cells/immunology , Epithelial Cells/virology , HEK293 Cells , Host Microbial Interactions/drug effects , Host Microbial Interactions/immunology , Humans , In Vitro Techniques , Lung/drug effects , Lung/immunology , Lung/virology , Mice , Mice, Inbred BALB C , Serine Endopeptidases/drug effects , Serine Endopeptidases/genetics , Serine Endopeptidases/immunology , Transcription, Genetic/drug effects , Transcription, Genetic/immunology , Vero Cells
Am J Respir Crit Care Med ; 205(1): 1-2, 2022 01 01.
Article in English | MEDLINE | ID: covidwho-1528614
Front Cardiovasc Med ; 7: 585866, 2020.
Article in English | MEDLINE | ID: covidwho-914408


Background: Italy has one of the world's oldest populations, and suffered one the highest death tolls from Coronavirus disease 2019 (COVID-19) worldwide. Older people with cardiovascular diseases (CVDs), and in particular hypertension, are at higher risk of hospitalization and death for COVID-19. Whether hypertension medications may increase the risk for death in older COVID 19 inpatients at the highest risk for the disease is currently unknown. Methods: Data from 5,625 COVID-19 inpatients were manually extracted from medical charts from 61 hospitals across Italy. From the initial 5,625 patients, 3,179 were included in the study as they were either discharged or deceased at the time of the data analysis. Primary outcome was inpatient death or recovery. Mixed effects logistic regression models were adjusted for sex, age, and number of comorbidities, with a random effect for site. Results: A large proportion of participating inpatients were ≥65 years old (58%), male (68%), non-smokers (93%) with comorbidities (66%). Each additional comorbidity increased the risk of death by 35% [adjOR = 1.35 (1.2, 1.5) p < 0.001]. Use of ACE inhibitors, ARBs, beta-blockers or Ca-antagonists was not associated with significantly increased risk of death. There was a marginal negative association between ARB use and death, and a marginal positive association between diuretic use and death. Conclusions: This Italian nationwide observational study of COVID-19 inpatients, the majority of which ≥65 years old, indicates that there is a linear direct relationship between the number of comorbidities and the risk of death. Among CVDs, hypertension and pre-existing cardiomyopathy were significantly associated with risk of death. The use of hypertension medications reported to be safe in younger cohorts, do not contribute significantly to increased COVID-19 related deaths in an older population that suffered one of the highest death tolls worldwide.

J Allergy Clin Immunol ; 146(1): 80-88.e8, 2020 Jul.
Article in English | MEDLINE | ID: covidwho-276526


BACKGROUND: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has dramatically changed our world, country, communities, and families. There is controversy regarding risk factors for severe COVID-19 disease. It has been suggested that asthma and allergy are not highly represented as comorbid conditions associated with COVID-19. OBJECTIVE: Our aim was to extend our work in IL-13 biology to determine whether airway epithelial cell expression of 2 key mediators critical for SARS-CoV-2 infection, namely, angiotensin-converting enzyme 2 (ACE2) and transmembrane protease, serine 2 (TMPRSS2), are modulated by IL-13. METHODS: We determined effects of IL-13 treatment on ACE2 and TMPRSS2 expression ex vivo in primary airway epithelial cells from participants with and without type 2 asthma obtained by bronchoscopy. We also examined expression of ACE2 and TMPRSS2 in 2 data sets containing gene expression data from nasal and airway epithelial cells from children and adults with asthma and allergic rhinitis. RESULTS: IL-13 significantly reduced ACE2 and increased TMPRSS2 expression ex vivo in airway epithelial cells. In 2 independent data sets, ACE2 expression was significantly reduced and TMPRSS2 expression was significantly increased in the nasal and airway epithelial cells in type 2 asthma and allergic rhinitis. ACE2 expression was significantly negatively associated with type 2 cytokines, whereas TMPRSS2 expression was significantly positively associated with type 2 cytokines. CONCLUSION: IL-13 modulates ACE2 and TMPRSS2 expression in airway epithelial cells in asthma and atopy. This deserves further study with regard to any effects that asthma and atopy may render in the setting of COVID-19 infection.

Asthma/immunology , Coronavirus Infections/immunology , Hypersensitivity, Immediate/immunology , Interleukin-13/immunology , Peptidyl-Dipeptidase A/metabolism , Pneumonia, Viral/immunology , Serine Endopeptidases/metabolism , Adult , Angiotensin-Converting Enzyme 2 , Asthma/metabolism , Betacoronavirus/immunology , COVID-19 , Child , Coronavirus Infections/metabolism , Female , Humans , Hypersensitivity, Immediate/metabolism , Inflammation/immunology , Inflammation/virology , Interleukin-13/pharmacology , Male , Pandemics , Pneumonia, Viral/metabolism , Respiratory Mucosa/drug effects , Respiratory Mucosa/immunology , Respiratory Mucosa/metabolism , SARS-CoV-2