Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 145
Filter
1.
iScience ; 25(11): 105380, 2022 Nov 18.
Article in English | MEDLINE | ID: covidwho-2179828

ABSTRACT

This study aimed to determine the impact of ultra-rapid rollout vaccination on incidence of SARS-CoV-2 infection. Vaccination with BNT162b2 was provided to 66.9% of eligible residents of the Schwaz district in Tyrol, Austria, within six days per dose (first dose: 11-16 March 2021, second dose: 8-13 April 2021). Of 11,955 individuals enrolled at nine vaccination centers (median age 44.6 years; 51.3% female), 71 had incident SARS-CoV-2 over a six-month follow-up. Incidence rates per 100,000 person-weeks were 92.3 (95% confidence interval [CI]: 70.8-120.2) at weeks 1-5 and 6.4 (3.9-10.4) at ≥6 weeks after dose 1. In these two periods, effectiveness of the vaccination campaign to reduce incident SARS-CoV-2 was 58.6% (50.8%-65.2%) and 91.1% (89.6%-92.3%) in study participants and 28.3% (23.1%-33.0%) and 64.0% (61.7%-66.1%) in the Schwaz district, compared with districts with slower vaccination rollout. Therefore, the vaccination campaign in the Schwaz district illustrates the impact of accelerated vaccination rollout in controlling the pandemic.

2.
Multiple Sclerosis and Related Disorders ; : 104486, 2022.
Article in English | ScienceDirect | ID: covidwho-2165723

ABSTRACT

Background : People living with multiple sclerosis (MS) and other disorders treated with immunomodulatory therapies remain concerned about suboptimal responses to coronavirus disease 2019 (COVID-19) vaccines. Important questions persist regarding immunological response to third vaccines, particularly with respect to newer virus variants. The objective of this study is to evaluate humoral and cellular immune responses to a third COVID-19 vaccine dose in people on anti-CD20 therapy and sphingosine 1-phosphate receptor (S1PR) modulators, including Omicron-specific assays. Methods : This is an observational study evaluating immunological responses to third COVID-19 vaccine dose in participants treated with anti-CD20 agents, S1PR modulators, and healthy controls. Neutralizing antibodies against USA-WA1/2020 (WA1) and B.1.1.529 (BA.1) severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) were measured before and after third vaccine. Groups were compared by one-way ANOVA with Tukey multiple comparisons. Cellular responses to spike peptide pools generated from WA1 and BA.1 were evaluated. Pre-post comparisons were made by Wilcoxon paired t-tests, inter-cohort comparisons by Mann-Whitney t-test. Results : This cohort includes 25 participants on anti-CD20 therapy, 12 on S1PR modulators, and 14 healthy controls. Among those on anti-CD20 therapy, neutralizing antibodies to WA1 were significantly reduced compared to healthy controls (ID50% GM post-vaccination of 8.1 ± 2.8 in anti-CD20 therapy group vs 452.6 ± 8.442 healthy controls, P<0.0001) and neutralizing antibodies to BA.1 were below the threshold of detection nearly universally. However, cellular responses, including to Omicron-specific peptides, were not significantly different from controls. Among those on S1PR modulators, neutralizing antibodies to WA1 were detected in a minority, and only 3/12 had neutralizing antibodies just at the limit of detection to BA.1. Cellular responses to Spike antigen in those on S1PR modulators were reduced by a factor of 100 compared to controls (median 0.0008% vs. 0.08%, p<0.001) and were not significantly "boosted” by a third injection. Conclusions : Participants on anti-CD20 and S1PR modulator therapies had impaired antibody neutralization capacity, particularly to BA.1, even after a third vaccine. T cell responses were not affected by anti-CD20 therapies, but were nearly abrogated by S1PR modulators. These results have clinical implications warranting further study.

3.
Nat Chem Biol ; 2022 Nov 21.
Article in English | MEDLINE | ID: covidwho-2133477

ABSTRACT

We report the engineering and selection of two synthetic proteins-FSR16m and FSR22-for the possible treatment of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. FSR16m and FSR22 are trimeric proteins composed of DARPin SR16m or SR22 fused with a T4 foldon. Despite selection by a spike protein from a now historical SARS-CoV-2 strain, FSR16m and FSR22 exhibit broad-spectrum neutralization of SARS-CoV-2 strains, inhibiting authentic B.1.351, B.1.617.2 and BA.1.1 viruses, with respective IC50 values of 3.4, 2.2 and 7.4 ng ml-1 for FSR16m. Cryo-EM structures revealed that these DARPins recognize a region of the receptor-binding domain (residues 456, 475, 486, 487 and 489) overlapping a critical portion of the angiotensin-converting enzyme 2 (ACE2)-binding surface. K18-hACE2 transgenic mice inoculated with B.1.617.2 and receiving intranasally administered FSR16m showed less weight loss and 10-100-fold lower viral burden in upper and lower respiratory tracts. The strong and broad neutralization potency makes FSR16m and FSR22 promising candidates for the prevention and treatment of infection by SARS-CoV-2.

5.
Euro Surveill ; 27(39)2022 09.
Article in English | MEDLINE | ID: covidwho-2109633

ABSTRACT

BackgroundAfter an outbreak of the SARS-CoV-2 Beta variant in the district of Schwaz/Austria, vaccination with Comirnaty vaccine (BNT162b2 mRNA, BioNTech-Pfizer) had been offered to all adult inhabitants (≥ 16 years) in March 2021. This made Schwaz one of the most vaccinated regions in Europe at that time (70% of the adult population took up the offer). In contrast, all other Austrian districts remained with low vaccine coverage.AimWe studied whether this rapid mass vaccination campaign provided indirect protection to unvaccinated individuals such as children (< 16 years) living in the same district.MethodsTo study the effect of the campaign we used two complementary approaches. We compared infection rates among the population of children (< 16 years) in Schwaz with (i) the child population from similar districts (using the synthetic control method), and (ii) with the child population from municipalities along the border of Schwaz not included in the campaign (using an event study approach).ResultsBefore the campaign, we observed very similar infection spread across the cohort of children in Schwaz and the control regions. After the campaign, we found a significant reduction of new cases among children of -64.5% (95%-CI: -82.0 to -30.2%) relative to adjacent border municipalities (using the event study model). Employing the synthetic control method, we observed a significant reduction of -42.8% in the same cohort.ConclusionOur results constitute novel evidence of an indirect protection effect from a group of vaccinated individuals to an unvaccinated group.


Subject(s)
COVID-19 , Measles , Adult , Austria/epidemiology , BNT162 Vaccine , COVID-19/epidemiology , COVID-19/prevention & control , COVID-19 Vaccines , Child , Humans , Immunization Programs , Measles/epidemiology , Measles Vaccine , SARS-CoV-2 , Vaccination
6.
iScience ; 2022.
Article in English | EuropePMC | ID: covidwho-2102742

ABSTRACT

This study aimed to determine the impact of ultra-rapid rollout vaccination on incidence of SARS-CoV-2 infection. Vaccination with BNT162b2 was provided to 66.9% of eligible residents of the Schwaz district in Tyrol, Austria, within six days per dose (first dose: 11–16 March 2021, second dose: 8–13 April 2021). Of 11,955 individuals enrolled at nine vaccination centers (median age 44.6 years;51.3% female), 71 had incident SARS-CoV-2 over a six-month follow-up. Incidence rates per 100,000 person-weeks were 92.3 (95% confidence interval [CI]: 70.8–120.2) at weeks 1–5 and 6.4 (3.9–10.4) at ≥6 weeks after dose 1. In these two periods, effectiveness of the vaccination campaign to reduce incident SARS-CoV-2 was 58.6% (50.8%–65.2%) and 91.1% (89.6%–92.3%) in study participants and 28.3% (23.1%–33.0%) and 64.0% (61.7%–66.1%) in the Schwaz district, compared with districts with slower vaccination rollout. Therefore, the vaccination campaign in the Schwaz district illustrates the impact of accelerated vaccination rollout in controlling the pandemic. Graphical Health sciences;Population;Immunology

7.
Immunity ; 55(7): 1299-1315.e4, 2022 07 12.
Article in English | MEDLINE | ID: covidwho-2076210

ABSTRACT

As the establishment of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-specific T cell memory in children remains largely unexplored, we recruited convalescent COVID-19 children and adults to define their circulating memory SARS-CoV-2-specific CD4+ and CD8+ T cells prior to vaccination. We analyzed epitope-specific T cells directly ex vivo using seven HLA class I and class II tetramers presenting SARS-CoV-2 epitopes, together with Spike-specific B cells. Unvaccinated children who seroconverted had comparable Spike-specific but lower ORF1a- and N-specific memory T cell responses compared with adults. This agreed with our TCR sequencing data showing reduced clonal expansion in children. A strong stem cell memory phenotype and common T cell receptor motifs were detected within tetramer-specific T cells in seroconverted children. Conversely, children who did not seroconvert had tetramer-specific T cells of predominantly naive phenotypes and diverse TCRαß repertoires. Our study demonstrates the generation of SARS-CoV-2-specific T cell memory with common TCRαß motifs in unvaccinated seroconverted children after their first virus encounter.


Subject(s)
COVID-19 , SARS-CoV-2 , CD4-Positive T-Lymphocytes , CD8-Positive T-Lymphocytes , Epitopes, T-Lymphocyte , Humans , Immunologic Memory , Receptors, Antigen, T-Cell , Receptors, Antigen, T-Cell, alpha-beta/genetics , Spike Glycoprotein, Coronavirus
8.
Med (N Y) ; 3(10): 705-721.e11, 2022 10 14.
Article in English | MEDLINE | ID: covidwho-2076532

ABSTRACT

BACKGROUND: The continual emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants of concern, in particular the newly emerged Omicron (B.1.1.529) variant and its BA.X lineages, has rendered ineffective a number of previously FDA emergency use authorized SARS-CoV-2 neutralizing antibody therapies. Furthermore, those approved antibodies with neutralizing activity against Omicron BA.1 are reportedly ineffective against the subset of Omicron subvariants that contain a R346K substitution, BA.1.1, and the more recently emergent BA.2, demonstrating the continued need for discovery and characterization of candidate therapeutic antibodies with the breadth and potency of neutralizing activity required to treat newly diagnosed COVID-19 linked to recently emerged variants of concern. METHODS: Following a campaign of antibody discovery based on the vaccination of Harbor H2L2 mice with defined SARS-CoV-2 spike domains, we have characterized the activity of a large collection of spike-binding antibodies and identified a lead neutralizing human IgG1 LALA antibody, STI-9167. FINDINGS: STI-9167 has potent, broad-spectrum neutralizing activity against the current SARS-COV-2 variants of concern and retained activity against each of the tested Omicron subvariants in both pseudotype and live virus neutralization assays. Furthermore, STI-9167 nAb administered intranasally or intravenously provided protection against weight loss and reduced virus lung titers to levels below the limit of quantitation in Omicron-infected K18-hACE2 transgenic mice. CONCLUSIONS: With this established activity profile, a cGMP cell line has been developed and used to produce cGMP drug product intended for intravenous or intranasal use in human clinical trials. FUNDING: Funded by CRIPT (no. 75N93021R00014), DARPA (HR0011-19-2-0020), and NCI Seronet (U54CA260560).


Subject(s)
Antibodies, Neutralizing , COVID-19 , Administration, Intranasal , Animals , Antibodies, Neutralizing/therapeutic use , Antibodies, Viral/therapeutic use , COVID-19/drug therapy , Humans , Immunoglobulin G , Membrane Glycoproteins , Mice , Neutralization Tests , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/genetics , Viral Envelope Proteins
9.
Ann N Y Acad Sci ; 2022 Oct 02.
Article in English | MEDLINE | ID: covidwho-2052884

ABSTRACT

The COVID-19 pandemic caught the world largely unprepared, including scientific and policy communities. On April 10-13, 2022, researchers across academia, industry, government, and nonprofit organizations met at the Keystone symposium "Lessons from the Pandemic: Responding to Emerging Zoonotic Viral Diseases" to discuss the successes and challenges of the COVID-19 pandemic and what lessons can be applied moving forward. Speakers focused on experiences not only from the COVID-19 pandemic but also from outbreaks of other pathogens, including the Ebola virus, Lassa virus, and Nipah virus. A general consensus was that investments made during the COVID-19 pandemic in infrastructure, collaborations, laboratory and manufacturing capacity, diagnostics, clinical trial networks, and regulatory enhancements-notably, in low-to-middle income countries-must be maintained and strengthened to enable quick, concerted responses to future threats, especially to zoonotic pathogens.

10.
mBio ; 13(5): e0222322, 2022 10 26.
Article in English | MEDLINE | ID: covidwho-2038242

ABSTRACT

The continued evolution of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) necessitates that the global scientific community monitor, assess, and respond to the evolving coronavirus disease (COVID-19) pandemic. But the current reactive approach to emerging variants is ill-suited to address the quickly evolving and ever-changing pandemic. To tackle this challenge, investments in pathogen surveillance, systematic variant characterization, and data infrastructure and sharing across public and private sectors will be critical for planning proactive responses to emerging variants. Additionally, an emphasis on incorporating real-time variant identification in point-of-care diagnostics can help inform patient treatment. Active approaches to understand and identify "immunity gaps" can inform design of future vaccines, therapeutics, and diagnostics that will be more resistant to novel variants. Approaches where the scientific community actively plans for and anticipates changes to infectious diseases will result in a more resilient system, capable of adapting to evolving pathogens quickly and effectively.


Subject(s)
COVID-19 , Vaccines , Humans , SARS-CoV-2 , Pandemics/prevention & control , COVID-19 Testing
11.
EBioMedicine ; 83: 104208, 2022 Sep.
Article in English | MEDLINE | ID: covidwho-2035962

ABSTRACT

BACKGROUND: Better understanding of the association between characteristics of patients hospitalized with coronavirus disease 2019 (COVID-19) and outcome is needed to further improve upon patient management. METHODS: Immunophenotyping Assessment in a COVID-19 Cohort (IMPACC) is a prospective, observational study of 1164 patients from 20 hospitals across the United States. Disease severity was assessed using a 7-point ordinal scale based on degree of respiratory illness. Patients were prospectively surveyed for 1 year after discharge for post-acute sequalae of COVID-19 (PASC) through quarterly surveys. Demographics, comorbidities, radiographic findings, clinical laboratory values, SARS-CoV-2 PCR and serology were captured over a 28-day period. Multivariable logistic regression was performed. FINDINGS: The median age was 59 years (interquartile range [IQR] 20); 711 (61%) were men; overall mortality was 14%, and 228 (20%) required invasive mechanical ventilation. Unsupervised clustering of ordinal score over time revealed distinct disease course trajectories. Risk factors associated with prolonged hospitalization or death by day 28 included age ≥ 65 years (odds ratio [OR], 2.01; 95% CI 1.28-3.17), Hispanic ethnicity (OR, 1.71; 95% CI 1.13-2.57), elevated baseline creatinine (OR 2.80; 95% CI 1.63- 4.80) or troponin (OR 1.89; 95% 1.03-3.47), baseline lymphopenia (OR 2.19; 95% CI 1.61-2.97), presence of infiltrate by chest imaging (OR 3.16; 95% CI 1.96-5.10), and high SARS-CoV2 viral load (OR 1.53; 95% CI 1.17-2.00). Fatal cases had the lowest ratio of SARS-CoV-2 antibody to viral load levels compared to other trajectories over time (p=0.001). 589 survivors (51%) completed at least one survey at follow-up with 305 (52%) having at least one symptom consistent with PASC, most commonly dyspnea (56% among symptomatic patients). Female sex was the only associated risk factor for PASC. INTERPRETATION: Integration of PCR cycle threshold, and antibody values with demographics, comorbidities, and laboratory/radiographic findings identified risk factors for 28-day outcome severity, though only female sex was associated with PASC. Longitudinal clinical phenotyping offers important insights, and provides a framework for immunophenotyping for acute and long COVID-19. FUNDING: NIH.


Subject(s)
COVID-19 , COVID-19/complications , Creatinine , Female , Hospitalization , Humans , Male , Phenotype , Prospective Studies , RNA, Viral , SARS-CoV-2 , Severity of Illness Index , Troponin
12.
Vaccine ; 40(42): 6114-6124, 2022 10 06.
Article in English | MEDLINE | ID: covidwho-2031726

ABSTRACT

Two messenger RNA (mRNA)-based vaccines are widely used globally to prevent coronavirus disease 2019 (COVID-19). Both vaccine formulations contain PEGylated lipids in their composition, in the form of polyethylene glycol [PEG] 2000 dimyristoyl glycerol for mRNA-1273, and 2 [(polyethylene glycol)-2000]-N,N-ditetradecylacetamide for BNT162b2. It is known that some PEGylated drugs and products for human use which contain PEG are capable of eliciting immune responses that lead to to detectable PEG-specific antibodies in serum. In this study, we determined if any of the components of mRNA-1273 or BNT162b2 formulations elicited PEG-specific antibody responses in serum by enzyme linked immunosorbent assay (ELISA). We detected an increase in the reactivity to mRNA vaccine formulations in mRNA-1273 but not BNT162b2 vaccinees' sera in a prime-boost dependent manner. Furthermore, we observed the same pattern of reactivity against irrelevant lipid nanoparticles from an influenza virus mRNA formulation and found that the reactivity of such antibodies correlated well with antibody levels against high and low molecular weight PEG. Using sera from participants selected based on the vaccine-associated side effects experienced after vaccination, including delayed onset, injection site or severe allergic reactions, we found no obvious association between PEG antibodies and adverse reactions. Overall, our data shows a differential induction of anti-PEG antibodies by mRNA-1273 and BNT162b2. The clinical relevance of PEG reactive antibodies induced by administration of the mRNA-1273 vaccine, and the potential interaction of these antibodies with other PEGylated drugs remains to be explored.


Subject(s)
2019-nCoV Vaccine mRNA-1273 , COVID-19 , Antibodies , Antibodies, Viral , COVID-19/prevention & control , Glycerol , Humans , Lipids , Liposomes , Nanoparticles , Polyethylene Glycols , Proteins , RNA, Messenger , Vaccines, Synthetic , mRNA Vaccines
13.
mSphere ; 7(5): e0092721, 2022 10 26.
Article in English | MEDLINE | ID: covidwho-2019747

ABSTRACT

Current influenza virus vaccines and antivirals have limitations, some of which disproportionately affect their utilization against influenza B viruses. To inform ongoing efforts to address the considerable global burden of influenza B viruses, we previously described five murine monoclonal antibodies that broadly bind conserved epitopes on the neuraminidase of influenza B viruses and protect against lethal challenge in a mouse model when delivered via intraperitoneal injection. Here, we validate the continued relevance of these antibodies by demonstrating that their protective effects extend to lethal challenge with mouse-adapted influenza B viruses recently isolated from humans. We also found that humanization of murine antibodies 1F2 and 4F11 resulted in molecules that retain the ability to protect mice from lethal challenge when administered prophylactically. Intranasal administration as an alternative route of 1F2 delivery revealed no differences in the mouse challenge model compared to intraperitoneal injection, supporting further assessment of this more targeted and convenient administration method. Lastly, we evaluated the potential for intranasal 1F2 administration initiated 1 day after infection to prevent transmission of an influenza B virus between cocaged guinea pigs. Here, we observed a 40% rate of transmission with the 1F2 antibody administered to the infected donor compared to 100% transmission with administration of an irrelevant control antibody. These data suggest that intranasal administration could be a viable route of administration for antibody therapeutics. Collectively, these findings demonstrate the potential of broad antineuraminidase antibodies as therapeutics to prevent and treat infections caused by influenza B viruses. IMPORTANCE The global health burden of influenza B viruses, especially in children, has long been underappreciated. Although two antigenically distinct influenza B virus lineages cocirculated before the coronavirus disease 2019 (COVID-19) pandemic, the commonly used trivalent seasonal vaccines contain antigens from only one influenza B virus, providing limited cross-protection against viruses of the other lineage. Additionally, studies have called into question the clinical effectiveness of the neuraminidase inhibitors that comprise the majority of available antivirals in treating influenza B virus infections. We previously described antibodies that bind broadly to neuraminidases of influenza B viruses across decades of antigenic evolution and potently protect mice against lethal challenge. Here we appraise additional factors to develop these antineuraminidase antibodies as antivirals to prevent and treat infections caused by an extensive range of influenza B viruses. In addition this work assesses recent clinical isolates belonging to the two influenza B virus lineages, finding evidence supporting the development of these antibodies for prophylactic and therapeutic use.


Subject(s)
Influenza Vaccines , Orthomyxoviridae Infections , Animals , Guinea Pigs , Humans , Mice , Antibodies, Monoclonal/therapeutic use , Antibodies, Viral , Antiviral Agents , Disease Models, Animal , Epitopes , Influenza B virus , Neuraminidase
14.
Nat Commun ; 13(1): 5135, 2022 09 01.
Article in English | MEDLINE | ID: covidwho-2008273

ABSTRACT

Immune responses at the respiratory mucosal interface are critical to prevent respiratory infections but it is unclear to what extent antigen specific mucosal secretory IgA (SIgA) antibodies are induced by mRNA vaccination in humans. Here we analyze paired serum and saliva samples from patients with and without prior coronavirus disease 2019 (COVID-19) at multiple time points pre and post severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) mRNA vaccination. Our results suggest mucosal SIgA responses induced by mRNA vaccination are impacted by pre-existing immunity. Indeed, vaccination induced a minimal mucosal SIgA response in individuals without pre-exposure to SARS-CoV-2 while SIgA induction after vaccination was more efficient in patients with a history of COVID-19.


Subject(s)
COVID-19 Vaccines , COVID-19 , SARS-CoV-2 , Antibodies, Viral , Antibody Formation , COVID-19/immunology , COVID-19/prevention & control , COVID-19 Vaccines/immunology , Humans , Immunoglobulin A, Secretory , RNA, Messenger , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus , Vaccination
15.
Vaccine ; 40(41): 5868-5872, 2022 09 29.
Article in English | MEDLINE | ID: covidwho-2004592

ABSTRACT

BACKGROUND: Breakthrough infection with the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Omicron variant (B.1.1.529) has occurred in populations with high vaccination rates. METHODS: In a longitudinal cohort study, pre-breakthrough infection sera for Omicron breakthroughs (n = 12) were analyzed. Assays utilized include a laboratory-developed solid phase binding assay to recombinant spike protein, a commercial assay to the S1 domain of the spike protein calibrated to the World Health Organization (WHO) standard, and a commercial solid-phase surrogate neutralizing activity (SNA) assay. All assays employed spike protein preparations based on sequences from the Wuhan-Hu-1 strain. RESULTS: Pre-breakthrough binding antibody titers ranged from 1:800 to 1:51,200 for the laboratory-developed binding assay, which correlated well and agreed quantitatively with the commercial spike S1 domain WHO calibrated assay. SNA was detected in 10/12 (83%) samples. CONCLUSIONS: Neither high binding titers nor SNA were markers of protection from Omicron infection/re-infection.


Subject(s)
Antibodies, Neutralizing , COVID-19 , Antibodies, Viral , Humans , Longitudinal Studies , Membrane Glycoproteins , Neutralization Tests , Recombinant Proteins , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , Viral Envelope Proteins
16.
mBio ; 13(5): e0178422, 2022 10 26.
Article in English | MEDLINE | ID: covidwho-2001780

ABSTRACT

The PARIS (Protection Associated with Rapid Immunity to SARS-CoV-2) cohort follows health care workers with and without documented coronavirus disease 2019 (COVID-19) since April 2020. We report our findings regarding severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike-binding antibody stability and protection from infection in the pre-variant era. We analyzed data from 400 health care workers (150 seropositive and 250 seronegative at enrollment) for a median of 84 days. The SARS-CoV-2 spike-binding antibody titers were highly variable with antibody levels decreasing over the first 3 months, followed by a relative stabilization. We found that both more advanced age (>40 years) and female sex were associated with higher antibody levels (1.6-fold and 1.4-fold increases, respectively). Only six percent of the initially seropositive participants "seroreverted." We documented a total of 11 new SARS-CoV-2 infections (10 naive participants and 1 previously infected participant without detectable antibodies; P < 0.01), indicating that spike antibodies limit the risk of reinfection. These observations, however, only apply to SARS-CoV-2 variants antigenically similar to the ancestral SARS-CoV-2 ones. In conclusion, SARS-CoV-2 antibody titers mounted upon infection are stable over several months and provide protection from infection with antigenically similar viruses. IMPORTANCE SARS-CoV-2 is the cause of one of the largest noninfluenza pandemics of this century. This exceptional public health crisis highlights the urgent need for better understanding of the correlates of protection from infection and severe COVID-19. We established the PARIS cohort to determine durability and effectiveness of SARS-CoV-2 immune responses. Here, we report on the kinetics of SARS-CoV-2 spike-binding antibody after SARS-CoV-2 infection as well as reinfection rates using data collected between April 2020 and August 2021. We found that antibody levels stabilized at individual steady state levels after an initial decrease with seroreversion being found in only 6% of the convalescent participants. SARS-CoV-2 infections only occurred in participants without detectable spike-binding antibodies, indicating significant protection from reinfection with antigenically similar viruses. Our data indicate the importance of spike-binding antibody titers in protection prior to vaccination and the wide circulation of antigenically diverse variants of concern.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Female , Adult , SARS-CoV-2/genetics , Reinfection , Spike Glycoprotein, Coronavirus/genetics , Antibodies, Viral , Antibodies, Neutralizing
17.
Cell Rep Methods ; 2(8): 100273, 2022 Aug 22.
Article in English | MEDLINE | ID: covidwho-1977166

ABSTRACT

Neutralizing antibody (NAb) titer is a key biomarker of protection against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, but point-of-care methods for assessing NAb titer are not widely available. Here, we present a lateral flow assay that captures SARS-CoV-2 receptor-binding domain (RBD) that has been neutralized from binding angiotensin-converting enzyme 2 (ACE2). Quantification of neutralized RBD in this assay correlates with NAb titer from vaccinated and convalescent patients. This methodology demonstrated superior performance in assessing NAb titer compared with either measurement of total anti-spike immunoglobulin G titer or quantification of the absolute reduction in binding between ACE2 and RBD. Our testing platform has the potential for mass deployment to aid in determining at population scale the degree of protective immunity individuals may have following SARS-CoV-2 vaccination or infection and can enable simple at-home assessment of NAb titer.

18.
Paediatr Perinat Epidemiol ; 36(4): 466-475, 2022 07.
Article in English | MEDLINE | ID: covidwho-1932568

ABSTRACT

BACKGROUND: The COVID-19 pandemic is an ongoing global health threat, caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Questions remain about how SARS-CoV-2 impacts pregnant individuals and their children. OBJECTIVE: To expand our understanding of the effects of SARS-CoV-2 infection during pregnancy on pregnancy outcomes, regardless of symptomatology, by using serological tests to measure IgG antibody levels. METHODS: The Generation C Study is an ongoing prospective cohort study conducted at the Mount Sinai Health System. All pregnant individuals receiving obstetrical care at the Mount Sinai Healthcare System from 20 April 2020 onwards are eligible for participation. For the current analysis, we included participants who had given birth to a liveborn singleton infant on or before 22 September 2020. For each woman, we tested the latest prenatal blood sample available to establish seropositivity using a SARS-CoV-2 serologic enzyme-linked immunosorbent assay. Additionally, RT-PCR testing was performed on a nasopharyngeal swab taken during labour. Pregnancy outcomes of interest (i.e., gestational age at delivery, preterm birth, small for gestational age, Apgar scores, maternal and neonatal intensive care unit admission, and length of neonatal hospital stay) and covariates were extracted from medical records. Excluding individuals who tested RT-PCR positive at delivery, we conducted crude and adjusted regression models to compare antibody positive with antibody negative individuals at delivery. We stratified analyses by race/ethnicity to examine potential effect modification. RESULTS: The SARS-CoV-2 seroprevalence based on IgG measurement was 16.4% (95% confidence interval 13.7, 19.3; n=116). Twelve individuals (1.7%) were SARS-CoV-2 RT-PCR positive at delivery. Seropositive individuals were generally younger, more often Black or Hispanic, and more often had public insurance and higher pre-pregnancy BMI compared with seronegative individuals. None of the examined pregnancy outcomes differed by seropositivity, overall or stratified by race/ethnicity. CONCLUSION: Seropositivity for SARS-CoV-2 without RT-PCR positivity at delivery (suggesting that infection occurred earlier during pregnancy) was not associated with selected adverse maternal or neonatal outcomes among live births in a cohort sample from New York City.


Subject(s)
COVID-19 , Pregnancy Complications, Infectious , Premature Birth , COVID-19/diagnosis , COVID-19/epidemiology , Child , Cohort Studies , Female , Humans , Infant, Newborn , Pandemics , Pregnancy , Pregnancy Complications, Infectious/diagnosis , Pregnancy Complications, Infectious/epidemiology , Pregnancy Outcome/epidemiology , Premature Birth/epidemiology , Prospective Studies , SARS-CoV-2 , Seroepidemiologic Studies
19.
Nat Commun ; 13(1): 3921, 2022 07 07.
Article in English | MEDLINE | ID: covidwho-1921607

ABSTRACT

Due to differences in human and murine angiotensin converting enzyme 2 (ACE-2) receptor, initially available SARS-CoV-2 isolates could not infect mice. Here we show that serial passaging of USA-WA1/2020 strain in mouse lungs results in "mouse-adapted" SARS-CoV-2 (MA-SARS-CoV-2) with mutations in S, M, and N genes, and a twelve-nucleotide insertion in the S gene. MA-SARS-CoV-2 infection causes mild disease, with more pronounced morbidity depending on genetic background and in aged and obese mice. Two mutations in the S gene associated with mouse adaptation (N501Y, H655Y) are present in SARS-CoV-2 variants of concern (VoCs). N501Y in the receptor binding domain of viruses of the B.1.1.7, B.1.351, P.1 and B.1.1.529 lineages (Alpha, Beta, Gamma and Omicron variants) is associated with high transmissibility and allows VoCs to infect wild type mice. We further show that S protein mutations of MA-SARS-CoV-2 do not affect neutralization efficiency by human convalescent and post vaccination sera.


Subject(s)
COVID-19 , Immune Evasion , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , Aged , Animals , COVID-19/virology , Humans , Immune Sera , Mice , Mutation , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/genetics
20.
Nat Commun ; 13(1): 2774, 2022 05 19.
Article in English | MEDLINE | ID: covidwho-1900484

ABSTRACT

Respiratory tract infection with SARS-CoV-2 results in varying immunopathology underlying COVID-19. We examine cellular, humoral and cytokine responses covering 382 immune components in longitudinal blood and respiratory samples from hospitalized COVID-19 patients. SARS-CoV-2-specific IgM, IgG, IgA are detected in respiratory tract and blood, however, receptor-binding domain (RBD)-specific IgM and IgG seroconversion is enhanced in respiratory specimens. SARS-CoV-2 neutralization activity in respiratory samples correlates with RBD-specific IgM and IgG levels. Cytokines/chemokines vary between respiratory samples and plasma, indicating that inflammation should be assessed in respiratory specimens to understand immunopathology. IFN-α2 and IL-12p70 in endotracheal aspirate and neutralization in sputum negatively correlate with duration of hospital stay. Diverse immune subsets are detected in respiratory samples, dominated by neutrophils. Importantly, dexamethasone treatment does not affect humoral responses in blood of COVID-19 patients. Our study unveils differential immune responses between respiratory samples and blood, and shows how drug therapy affects immune responses during COVID-19.


Subject(s)
COVID-19 , Antibodies, Viral , Humans , Immunity , Immunoglobulin G , Immunoglobulin M , Respiratory System , SARS-CoV-2 , Severity of Illness Index , Spike Glycoprotein, Coronavirus
SELECTION OF CITATIONS
SEARCH DETAIL