Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
1.
EuropePMC; 2022.
Preprint in English | EuropePMC | ID: ppcovidwho-335222

ABSTRACT

Variant of concern (VOC) Omicron-BA1 has achieved global predominance in early 2022. Therefore, surveillance and comprehensive characterization of Omicron-BA.1 in advanced primary cell culture systems and multiple animal models is urgently needed. Here, we characterized Omicron-BA.1 and recombinant Omicron-BA.1 spike gene mutants in comparison with VOC Delta in well-differentiated primary human nasal and bronchial epithelial cells in vitro, followed by in vivo fitness characterization in naïve hamsters, ferrets and hACE2-expressing mice, and in immunized hACE2-mice. We demonstrate a spike-mediated enhancement of early replication of Omicron-BA.1 in nasal epithelial cultures, but limited replication in bronchial epithelial cultures. In Syrian hamsters, Delta showed dominance over Omicron-BA.1 and in ferrets, Omicron-BA.1 infection was abortive. In mice expressing the authentic hACE2-receptor, Delta and a Delta spike clone also showed dominance over Omicron-BA.1 and an Omicron-BA.1 spike clone, respectively. Interestingly, in naïve K18-hACE2 mice, we observed Delta spike-mediated increased replication and pathogenicity and Omicron-BA.1 spike-mediated reduced replication and pathogenicity, suggesting that the spike gene is a major determinant of both Delta and Omicron-BA.1 replication and pathogenicity. Finally, the Omicron-BA.1 spike clone was less well controlled by mRNA-vaccination in K18-hACE2-mice and became more competitive compared to the progenitor and Delta spike clones, suggesting that spike gene-mediated immune evasion is another important factor that led to Omicron-BA.1 dominance.

2.
Sci Rep ; 12(1): 2505, 2022 02 15.
Article in English | MEDLINE | ID: covidwho-1747189

ABSTRACT

Mpro, the main protease of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is essential for the viral life cycle. Accordingly, several groups have performed in silico screens to identify Mpro inhibitors that might be used to treat SARS-CoV-2 infections. We selected more than five hundred compounds from the top-ranking hits of two very large in silico screens for on-demand synthesis. We then examined whether these compounds could bind to Mpro and inhibit its protease activity. Two interesting chemotypes were identified, which were further evaluated by characterizing an additional five hundred synthesis on-demand analogues. The compounds of the first chemotype denatured Mpro and were considered not useful for further development. The compounds of the second chemotype bound to and enhanced the melting temperature of Mpro. The most active compound from this chemotype inhibited Mpro in vitro with an IC50 value of 1 µM and suppressed replication of the SARS-CoV-2 virus in tissue culture cells. Its mode of binding to Mpro was determined by X-ray crystallography, revealing that it is a non-covalent inhibitor. We propose that the inhibitors described here could form the basis for medicinal chemistry efforts that could lead to the development of clinically relevant inhibitors.


Subject(s)
Coronavirus 3C Proteases/antagonists & inhibitors , Protease Inhibitors/chemistry , SARS-CoV-2/enzymology , Binding Sites , COVID-19/pathology , COVID-19/virology , Coronavirus 3C Proteases/genetics , Coronavirus 3C Proteases/metabolism , Crystallography, X-Ray , Humans , Molecular Conformation , Molecular Docking Simulation , Nitriles/chemistry , Nitriles/metabolism , Nitriles/pharmacology , Protease Inhibitors/metabolism , Protease Inhibitors/pharmacology , Quinazolines/chemistry , Quinazolines/metabolism , Quinazolines/pharmacology , Recombinant Proteins/biosynthesis , Recombinant Proteins/chemistry , Recombinant Proteins/isolation & purification , SARS-CoV-2/isolation & purification , SARS-CoV-2/physiology , Virus Replication/drug effects
3.
PLoS Biol ; 19(12): e3001490, 2021 12.
Article in English | MEDLINE | ID: covidwho-1595018

ABSTRACT

Over the past 20 years, 3 highly pathogenic human coronaviruses (HCoVs) have emerged-Severe Acute Respiratory Syndrome Coronavirus (SARS-CoV), Middle East Respiratory Syndrome Coronavirus (MERS-CoV), and, most recently, Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2)-demonstrating that coronaviruses (CoVs) pose a serious threat to human health and highlighting the importance of developing effective therapies against them. Similar to other viruses, CoVs are dependent on host factors for their survival and replication. We hypothesized that evolutionarily distinct CoVs may exploit similar host factors and pathways to support their replication cycles. Herein, we conducted 2 independent genome-wide CRISPR/Cas-9 knockout (KO) screens to identify MERS-CoV and HCoV-229E host dependency factors (HDFs) required for HCoV replication in the human Huh7 cell line. Top scoring genes were further validated and assessed in the context of MERS-CoV and HCoV-229E infection as well as SARS-CoV and SARS-CoV-2 infection. Strikingly, we found that several autophagy-related genes, including TMEM41B, MINAR1, and the immunophilin FKBP8, were common host factors required for pan-CoV replication. Importantly, inhibition of the immunophilin protein family with the compounds cyclosporine A, and the nonimmunosuppressive derivative alisporivir, resulted in dose-dependent inhibition of CoV replication in primary human nasal epithelial cell cultures, which recapitulate the natural site of virus replication. Overall, we identified host factors that are crucial for CoV replication and demonstrated that these factors constitute potential targets for therapeutic intervention by clinically approved drugs.


Subject(s)
Autophagy/genetics , CRISPR-Cas Systems , Middle East Respiratory Syndrome Coronavirus/genetics , SARS-CoV-2/genetics , Antiviral Agents/pharmacology , Gene Knockdown Techniques , Host-Pathogen Interactions , Humans , Middle East Respiratory Syndrome Coronavirus/drug effects , Middle East Respiratory Syndrome Coronavirus/physiology , SARS-CoV-2/drug effects , SARS-CoV-2/physiology , Virus Replication
4.
Emerg Infect Dis ; 27(7): 1811-1820, 2021 07.
Article in English | MEDLINE | ID: covidwho-1278358

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has spread globally, and the number of worldwide cases continues to rise. The zoonotic origins of SARS-CoV-2 and its intermediate and potential spillback host reservoirs, besides humans, remain largely unknown. Because of ethical and experimental constraints and more important, to reduce and refine animal experimentation, we used our repository of well-differentiated airway epithelial cell (AEC) cultures from various domesticated and wildlife animal species to assess their susceptibility to SARS-CoV-2. We observed that SARS-CoV-2 replicated efficiently only in monkey and cat AEC culture models. Whole-genome sequencing of progeny viruses revealed no obvious signs of nucleotide transitions required for SARS-CoV-2 to productively infect monkey and cat AEC cultures. Our findings, together with previous reports of human-to-animal spillover events, warrant close surveillance to determine the potential role of cats, monkeys, and closely related species as spillback reservoirs for SARS-CoV-2.


Subject(s)
Animals, Wild , COVID-19 , Animals , Epithelial Cells , Humans , Respiratory System , SARS-CoV-2
5.
Science ; 372(6548): 1306-1313, 2021 06 18.
Article in English | MEDLINE | ID: covidwho-1228853

ABSTRACT

Programmed ribosomal frameshifting is a key event during translation of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) RNA genome that allows synthesis of the viral RNA-dependent RNA polymerase and downstream proteins. Here, we present the cryo-electron microscopy structure of a translating mammalian ribosome primed for frameshifting on the viral RNA. The viral RNA adopts a pseudoknot structure that lodges at the entry to the ribosomal messenger RNA (mRNA) channel to generate tension in the mRNA and promote frameshifting, whereas the nascent viral polyprotein forms distinct interactions with the ribosomal tunnel. Biochemical experiments validate the structural observations and reveal mechanistic and regulatory features that influence frameshifting efficiency. Finally, we compare compounds previously shown to reduce frameshifting with respect to their ability to inhibit SARS-CoV-2 replication, establishing coronavirus frameshifting as a target for antiviral intervention.


Subject(s)
Frameshifting, Ribosomal , RNA, Viral/genetics , Ribosomes/ultrastructure , SARS-CoV-2/genetics , Viral Proteins/biosynthesis , Animals , Antiviral Agents/pharmacology , Codon, Terminator , Coronavirus RNA-Dependent RNA Polymerase/biosynthesis , Coronavirus RNA-Dependent RNA Polymerase/chemistry , Coronavirus RNA-Dependent RNA Polymerase/genetics , Cryoelectron Microscopy , Fluoroquinolones/pharmacology , Frameshifting, Ribosomal/drug effects , Genome, Viral , Humans , Image Processing, Computer-Assisted , Models, Molecular , Nucleic Acid Conformation , Open Reading Frames , Protein Folding , RNA, Messenger/chemistry , RNA, Messenger/genetics , RNA, Messenger/metabolism , RNA, Ribosomal, 18S/chemistry , RNA, Ribosomal, 18S/genetics , RNA, Ribosomal, 18S/metabolism , RNA, Viral/chemistry , RNA, Viral/metabolism , Ribosomal Proteins/metabolism , Ribosomes/metabolism , SARS-CoV-2/drug effects , SARS-CoV-2/physiology , Viral Proteins/chemistry , Viral Proteins/genetics , Virus Replication/drug effects
6.
PLoS Biol ; 19(3): e3001158, 2021 03.
Article in English | MEDLINE | ID: covidwho-1156073

ABSTRACT

Since its emergence in December 2019, Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) has spread globally and become a major public health burden. Despite its close phylogenetic relationship to SARS-CoV, SARS-CoV-2 exhibits increased human-to-human transmission dynamics, likely due to efficient early replication in the upper respiratory epithelium of infected individuals. Since different temperatures encountered in the human upper and lower respiratory tract (33°C and 37°C, respectively) have been shown to affect the replication kinetics of several respiratory viruses, as well as host innate immune response dynamics, we investigated the impact of temperature on SARS-CoV-2 and SARS-CoV infection using the primary human airway epithelial cell culture model. SARS-CoV-2, in contrast to SARS-CoV, replicated to higher titers when infections were performed at 33°C rather than 37°C. Although both viruses were highly sensitive to type I and type III interferon pretreatment, a detailed time-resolved transcriptome analysis revealed temperature-dependent interferon and pro-inflammatory responses induced by SARS-CoV-2 that were inversely proportional to its replication efficiency at 33°C or 37°C. These data provide crucial insight on pivotal virus-host interaction dynamics and are in line with characteristic clinical features of SARS-CoV-2 and SARS-CoV, as well as their respective transmission efficiencies.


Subject(s)
Gene Expression Profiling/methods , Gene Expression Regulation, Viral/genetics , SARS Virus/genetics , SARS-CoV-2/genetics , Animals , Antiviral Agents/pharmacology , Cells, Cultured , Chlorocebus aethiops , Epithelial Cells/drug effects , Epithelial Cells/metabolism , Epithelial Cells/virology , Gene Expression Regulation, Viral/drug effects , Host-Pathogen Interactions/drug effects , Host-Pathogen Interactions/genetics , Humans , Interferons/pharmacology , SARS Virus/drug effects , SARS Virus/physiology , SARS-CoV-2/drug effects , SARS-CoV-2/physiology , Species Specificity , Temperature , Vero Cells , Virus Replication/drug effects , Virus Replication/genetics
7.
Nat Rev Microbiol ; 19(3): 155-170, 2021 03.
Article in English | MEDLINE | ID: covidwho-894400

ABSTRACT

The SARS-CoV-2 pandemic and its unprecedented global societal and economic disruptive impact has marked the third zoonotic introduction of a highly pathogenic coronavirus into the human population. Although the previous coronavirus SARS-CoV and MERS-CoV epidemics raised awareness of the need for clinically available therapeutic or preventive interventions, to date, no treatments with proven efficacy are available. The development of effective intervention strategies relies on the knowledge of molecular and cellular mechanisms of coronavirus infections, which highlights the significance of studying virus-host interactions at the molecular level to identify targets for antiviral intervention and to elucidate critical viral and host determinants that are decisive for the development of severe disease. In this Review, we summarize the first discoveries that shape our current understanding of SARS-CoV-2 infection throughout the intracellular viral life cycle and relate that to our knowledge of coronavirus biology. The elucidation of similarities and differences between SARS-CoV-2 and other coronaviruses will support future preparedness and strategies to combat coronavirus infections.


Subject(s)
COVID-19/virology , SARS-CoV-2/physiology , Animals , COVID-19/drug therapy , Host-Pathogen Interactions , Humans , SARS-CoV-2/chemistry , Viral Proteins/genetics , Viral Proteins/metabolism , Virus Internalization , Virus Replication
8.
Emerg Infect Dis ; 26(7): 1592-1595, 2020 07.
Article in English | MEDLINE | ID: covidwho-712728

ABSTRACT

Infection control instructions call for use of alcohol-based hand rub solutions to inactivate severe acute respiratory syndrome coronavirus 2. We determined the virucidal activity of World Health Organization-recommended hand rub formulations, at full strength and multiple dilutions, and of the active ingredients. All disinfectants demonstrated efficient virus inactivation.


Subject(s)
Alcohols/pharmacology , Betacoronavirus/drug effects , Coronavirus Infections/prevention & control , Disinfectants/pharmacology , Hand Disinfection/methods , Pandemics/prevention & control , Pneumonia, Viral/prevention & control , Virus Inactivation , COVID-19 , Humans , SARS-CoV-2 , World Health Organization
9.
Nat Microbiol ; 5(11): 1330-1339, 2020 11.
Article in English | MEDLINE | ID: covidwho-676586

ABSTRACT

Zoonotic coronaviruses (CoVs) are substantial threats to global health, as exemplified by the emergence of two severe acute respiratory syndrome CoVs (SARS-CoV and SARS-CoV-2) and Middle East respiratory syndrome CoV (MERS-CoV) within two decades1-3. Host immune responses to CoVs are complex and regulated in part through antiviral interferons. However, interferon-stimulated gene products that inhibit CoVs are not well characterized4. Here, we show that lymphocyte antigen 6 complex, locus E (LY6E) potently restricts infection by multiple CoVs, including SARS-CoV, SARS-CoV-2 and MERS-CoV. Mechanistic studies revealed that LY6E inhibits CoV entry into cells by interfering with spike protein-mediated membrane fusion. Importantly, mice lacking Ly6e in immune cells were highly susceptible to a murine CoV-mouse hepatitis virus. Exacerbated viral pathogenesis in Ly6e knockout mice was accompanied by loss of hepatic immune cells, higher splenic viral burden and reduction in global antiviral gene pathways. Accordingly, we found that constitutive Ly6e directly protects primary B cells from murine CoV infection. Our results show that LY6E is a critical antiviral immune effector that controls CoV infection and pathogenesis. These findings advance our understanding of immune-mediated control of CoV in vitro and in vivo-knowledge that could help inform strategies to combat infection by emerging CoVs.


Subject(s)
Antigens, Surface/metabolism , Coronavirus Infections/immunology , Coronavirus Infections/virology , Coronavirus/physiology , GPI-Linked Proteins/metabolism , Angiotensin-Converting Enzyme 2 , Animals , Antigens, Surface/genetics , Antigens, Surface/immunology , Betacoronavirus/immunology , Betacoronavirus/physiology , COVID-19 , Coronavirus/immunology , Female , GPI-Linked Proteins/genetics , GPI-Linked Proteins/immunology , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Middle East Respiratory Syndrome Coronavirus/immunology , Middle East Respiratory Syndrome Coronavirus/physiology , Pandemics , Peptidyl-Dipeptidase A/metabolism , Pneumonia, Viral/immunology , Pneumonia, Viral/virology , SARS Virus/immunology , SARS Virus/physiology , SARS-CoV-2 , Virus Internalization
11.
Nature ; 582(7813): 561-565, 2020 06.
Article in English | MEDLINE | ID: covidwho-164589

ABSTRACT

Reverse genetics has been an indispensable tool to gain insights into viral pathogenesis and vaccine development. The genomes of large RNA viruses, such as those from coronaviruses, are cumbersome to clone and manipulate in Escherichia coli owing to the size and occasional instability of the genome1-3. Therefore, an alternative rapid and robust reverse-genetics platform for RNA viruses would benefit the research community. Here we show the full functionality of a yeast-based synthetic genomics platform to genetically reconstruct diverse RNA viruses, including members of the Coronaviridae, Flaviviridae and Pneumoviridae families. Viral subgenomic fragments were generated using viral isolates, cloned viral DNA, clinical samples or synthetic DNA, and these fragments were then reassembled in one step in Saccharomyces cerevisiae using transformation-associated recombination cloning to maintain the genome as a yeast artificial chromosome. T7 RNA polymerase was then used to generate infectious RNA to rescue viable virus. Using this platform, we were able to engineer and generate chemically synthesized clones of the virus, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)4, which has caused the recent pandemic of coronavirus disease (COVID-19), in only a week after receipt of the synthetic DNA fragments. The technical advance that we describe here facilitates rapid responses to emerging viruses as it enables the real-time generation and functional characterization of evolving RNA virus variants during an outbreak.


Subject(s)
Betacoronavirus/genetics , Cloning, Molecular/methods , Coronavirus Infections/virology , Genome, Viral/genetics , Genomics/methods , Pneumonia, Viral/virology , Reverse Genetics/methods , Synthetic Biology/methods , Animals , COVID-19 , China/epidemiology , Chlorocebus aethiops , Chromosomes, Artificial, Yeast/metabolism , Coronavirus Infections/epidemiology , DNA-Directed RNA Polymerases/metabolism , Evolution, Molecular , Humans , Mutation , Pandemics/statistics & numerical data , Pneumonia, Viral/epidemiology , Respiratory Syncytial Viruses/genetics , SARS-CoV-2 , Saccharomyces cerevisiae/genetics , Vero Cells , Viral Proteins/metabolism , Zika Virus/genetics
SELECTION OF CITATIONS
SEARCH DETAIL