ABSTRACT
BackgroundThere are conflicting reports on the performance of rapid antigen detection tests (RDT) in the detection of the SARS-CoV-2 Omicron (B.1.1.529) variant; however, these tests continue to be used frequently to detect potentially contagious individuals with high viral loads.AimThe aim of this study was to investigate comparative detection of the Delta (B.1.617.2) and Omicron variants by using a selection of 20 RDT and a limited panel of pooled combined oro- and nasopharyngeal clinical Delta and Omicron specimens.MethodsWe tested 20 CE-marked RDT for their performance to detect SARS-CoV-2 Delta and Omicron by using a panel of pooled clinical specimens collected in January 2022 in Berlin, Germany.ResultsWe observed equivalent detection performance for Delta and Omicron for most RDT, and sensitivity was widely in line with our previous pre-Delta/Omicron evaluation. Some variation for individual RDT was observed either for Delta vs Omicron detection, or when compared with the previous evaluation, which may be explained both by different panel sizes resulting in different data robustness and potential limitation of batch-to-batch consistency. Additional experiments with three RDT using non-pooled routine clinical samples confirmed comparable performance to detect Delta vs Omicron. Overall, RDT that were previously positively evaluated retained good performance also for Delta and Omicron variants.ConclusionOur findings suggest that currently available RDT are sufficient for the detection of SARS-CoV-2 Delta and Omicron variants.
Subject(s)
COVID-19 Serological Testing , COVID-19 , SARS-CoV-2 , Humans , Berlin , COVID-19/diagnosis , Germany , SARS-CoV-2/genetics , COVID-19 Serological Testing/methodsABSTRACT
Since December 2019 the world has been facing the outbreak of the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2). Identification of infected patients and discrimination from other respiratory infections have so far been accomplished by using highly specific real-time PCRs. Here we present a rapid multiplex approach (RespiCoV), combining highly multiplexed PCRs and MinION sequencing suitable for the simultaneous screening for 41 viral and five bacterial agents related to respiratory tract infections, including the human coronaviruses NL63, HKU1, OC43, 229E, Middle East respiratory syndrome coronavirus, SARS-CoV, and SARS-CoV-2. RespiCoV was applied to 150 patient samples with suspected SARS-CoV-2 infection and compared with specific real-time PCR. Additionally, several respiratory tract pathogens were identified in samples tested positive or negative for SARS-CoV-2. Finally, RespiCoV was experimentally compared to the commercial RespiFinder 2SMART multiplex screening assay (PathoFinder, The Netherlands).
Subject(s)
Bacteria/genetics , COVID-19/diagnosis , High-Throughput Nucleotide Sequencing/methods , RNA Viruses/genetics , Respiratory Tract Infections/diagnosis , SARS-CoV-2/genetics , Bacteria/isolation & purification , COVID-19/virology , Coronavirus/genetics , Coronavirus/isolation & purification , DNA, Bacterial/chemistry , DNA, Bacterial/metabolism , Herpesvirus 1, Human/genetics , Herpesvirus 1, Human/isolation & purification , Humans , Multiplex Polymerase Chain Reaction , Nanopores , Orthomyxoviridae/genetics , Orthomyxoviridae/isolation & purification , RNA Viruses/isolation & purification , RNA, Viral/chemistry , RNA, Viral/metabolism , Respiratory Tract Infections/microbiology , Respiratory Tract Infections/virology , SARS-CoV-2/isolation & purificationABSTRACT
Background: Testing of possibly infected individuals remains cornerstone of containing the spread of SARS-CoV-2. Detection dogs could contribute to mass screening. Previous research demonstrated canines' ability to detect SARS-CoV-2-infections but has not investigated if dogs can differentiate between COVID-19 and other virus infections. Methods: Twelve dogs were trained to detect SARS-CoV-2 positive samples. Three test scenarios were performed to evaluate their ability to discriminate SARS-CoV-2-infections from viral infections of a different aetiology. Naso- and oropharyngeal swab samples from individuals and samples from cell culture both infected with one of 15 viruses that may cause COVID-19-like symptoms were presented as distractors in a randomised, double-blind study. Dogs were either trained with SARS-CoV-2 positive saliva samples (test scenario I and II) or with supernatant from cell cultures (test scenario III). Results: When using swab samples from individuals infected with viruses other than SARS-CoV-2 as distractors (test scenario I), dogs detected swab samples from SARS-CoV-2-infected individuals with a mean diagnostic sensitivity of 73.8% (95% CI: 66.0-81.7%) and a specificity of 95.1% (95% CI: 92.6-97.7%). In test scenario II and III cell culture supernatant from cells infected with SARS-CoV-2, cells infected with other coronaviruses and non-infected cells were presented. Dogs achieved mean diagnostic sensitivities of 61.2% (95% CI: 50.7-71.6%, test scenario II) and 75.8% (95% CI: 53.0-98.5%, test scenario III), respectively. The diagnostic specificities were 90.9% (95% CI: 87.3-94.6%, test scenario II) and 90.2% (95% CI: 81.1-99.4%, test scenario III), respectively. Conclusion: In all three test scenarios the mean specificities were above 90% which indicates that dogs can distinguish SARS-CoV-2-infections from other viral infections. However, compared to earlier studies our scent dogs achieved lower diagnostic sensitivities. To deploy COVID-19 detection dogs as a reliable screening method it is therefore mandatory to include a variety of samples from different viral respiratory tract infections in dog training to ensure a successful discrimination process.
ABSTRACT
IntroductionThe detection of SARS-CoV-2 with rapid diagnostic tests (RDT) has become an important tool to identify infected people and break infection chains. These RDT are usually based on antigen detection in a lateral flow approach.AimWe aimed to establish a comprehensive specimen panel for the decentralised technical evaluation of SARS-CoV-2 antigen rapid diagnostic tests.MethodsWhile for PCR diagnostics the validation of a PCR assay is well established, there is no common validation strategy for antigen tests, including RDT. In this proof-of-principle study we present the establishment of a panel of 50 pooled clinical specimens that cover a SARS-CoV-2 concentration range from 1.1â¯×â¯109 to 420 genome copies per mL of specimen. The panel was used to evaluate 31 RDT in up to six laboratories.ResultsOur results show that there is considerable variation in the detection limits and the clinical sensitivity of different RDT. We show that the best RDT can be applied to reliably identify infectious individuals who present with SARS-CoV-2 loads down to 106 genome copies per mL of specimen. For the identification of infected individuals with SARS-CoV-2 loads corresponding to less than 106 genome copies per mL, only three RDT showed a clinical sensitivity of more than 60%.ConclusionsSensitive RDT can be applied to identify infectious individuals with high viral loads but not to identify all infected individuals.
Subject(s)
COVID-19 , SARS-CoV-2 , Antigens, Viral , Diagnostic Tests, Routine , Humans , Sensitivity and Specificity , Serologic TestsABSTRACT
INTRODUCTION: Containing COVID-19 requires broad-scale testing. However, sample collection requires qualified personnel and protective equipment and may cause transmission. We assessed the sensitivity of SARS-CoV-2-rtPCR applying three self-sampling techniques as compared to professionally collected oro-nasopharyngeal samples (cOP/NP). METHODS: From 62 COVID-19 outpatients, we obtained: (i) multi-swab, MS; (ii) saliva sponge combined with nasal vestibula, SN; (iii) gargled water, GW; (iv) professionally collected cOP/NP (standard). We compared ct-values for E-gene and ORF1ab and analysed variables reducing sensitivity of self-collecting procedures. RESULTS: The median ct-values for E-gene and ORF1ab obtained in cOP/NP samples were 20.7 and 20.2, in MS samples 22.6 and 21.8, in SN samples 23.3 and 22.3, and in GW samples 30.3 and 29.8, respectively. MS and SN samples showed sensitivities of 95.2% (95%CI, 86.5-99.0) and GW samples of 88.7% (78.1-95.3). Sensitivity was inversely correlated with ct-values, and became <90% for samples obtained more than 8 days after symptom onset. For MS and SN samples, false negativity was associated with language problems, sampling errors, and symptom duration. CONCLUSION: Conclusions from this study are limited to the sensitivity of self-sampling in mildly to moderately symptomatic patients. Still, self-collected oral/nasal/saliva samples can facilitate up-scaling of testing in early symptomatic COVID-19 patients if operational errors are minimized.
Subject(s)
COVID-19 , SARS-CoV-2 , COVID-19 Testing , Humans , Nasopharynx , Outpatients , Saliva , Specimen HandlingABSTRACT
BACKGROUND: The reliable detection of SARS-CoV-2 has become one of the most important contributions to COVID-19 crisis management. With the publication of the first sequences of SARS-CoV-2, several diagnostic PCR assays have been developed and published. In addition to in-house assays the market was flooded with numerous commercially available ready-to-use PCR kits, with both approaches showing alarming shortages in reagent supply. AIM: Here we present a resource-efficient in-house protocol for the PCR detection of SARS-CoV-2 RNA in patient specimens (RKI/ZBS1 SARS-CoV-2 protocol). METHODS: Two duplex one-step real-time RT-PCR assays are run simultaneously and provide information on two different SARS-CoV-2 genomic regions. Each one is duplexed with a control that either indicates potential PCR inhibition or proves the successful extraction of nucleic acid from the clinical specimen. RESULTS: Limit of RNA detection for both SARS-CoV-2 assays is below 10 genomes per reaction. The protocol enables testing specimens in duplicate across the two different SARS-CoV-2 PCR assays, saving reagents by increasing testing capacity. The protocol can be run on various PCR cyclers with several PCR master mix kits. CONCLUSION: The presented RKI/ZBS1 SARS-CoV-2 protocol represents a cost-effective alternative in times of shortages when commercially available ready-to-use kits may not be available or affordable.
Subject(s)
COVID-19 Nucleic Acid Testing/methods , COVID-19/diagnosis , RNA, Viral/analysis , Real-Time Polymerase Chain Reaction/methods , SARS-CoV-2/genetics , Coronavirus Envelope Proteins/genetics , High-Throughput Nucleotide Sequencing/methods , Humans , Limit of Detection , Polyproteins/genetics , RNA, Viral/genetics , SARS-CoV-2/isolation & purification , Sensitivity and Specificity , Viral Proteins/geneticsABSTRACT
Non-pharmaceutical interventions (NPIs) remain decisive tools to contain SARS-CoV-2. Strategies that combine NPIs with testing may improve efficacy and shorten quarantine durations. We developed a stochastic within-host model of SARS-CoV-2 that captures temporal changes in test sensitivities, incubation periods, and infectious periods. We used the model to simulate relative transmission risk for (1) isolation of symptomatic individuals, (2) contact person management, and (3) quarantine of incoming travelers. We estimated that testing travelers at entry reduces transmission risks to 21.3% ([20.7, 23.9], by PCR) and 27.9% ([27.1, 31.1], by rapid diagnostic test [RDT]), compared with unrestricted entry. We calculated that 4 (PCR) or 5 (RDT) days of pre-test quarantine are non-inferior to 10 days of quarantine for incoming travelers and that 8 (PCR) or 10 (RDT) days of pre-test quarantine are non-inferior to 14 days of post-exposure quarantine. De-isolation of infected individuals 13 days after symptom onset may reduce the transmission risk to <0.2% (<0.01, 6.0).
ABSTRACT
Point of care detection of SARS-CoV-2 is one pillar in a containment strategy and important to break infection chains. Here we report the sensitive, specific and robust detection of SARS-CoV-2 and respective variants of concern by the ID NOW COVID-19 device.