Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
1.
Med Microbiol Immunol ; 2022 Nov 12.
Article in English | MEDLINE | ID: covidwho-2275137

ABSTRACT

During 2022, the COVID-19 pandemic has been dominated by the variant of concern (VoC) Omicron (B.1.1.529) and its rapidly emerging subvariants, including Omicron-BA.1 and -BA.2. Rapid antigen tests (RATs) are part of national testing strategies to identify SARS-CoV-2 infections on site in a community setting or to support layman's diagnostics at home. We and others have recently demonstrated an impaired RAT detection of infections caused by Omicron-BA.1 compared to Delta. Here, we evaluated the performance of five SARS-CoV-2 RATs in a single-centre laboratory study examining a total of 140 SARS-CoV-2 PCR-positive respiratory swab samples, 70 Omicron-BA.1 and 70 Omicron-BA.2, as well as 52 SARS-CoV-2 PCR-negative swabs collected from March 8th until April 10th, 2022. One test did not meet minimal criteria for specificity. In an assessment of the analytical sensitivity in clinical specimen, the 50% limit of detection (LoD50) ranged from 4.2 × 104 to 9.2 × 105 RNA copies subjected to the RAT for Omicron-BA.1 compared to 1.3 × 105 to 1.5 × 106 for Omicron-BA.2. Overall, intra-assay differences for the detection of Omicron-BA.1-containing and Omicron-BA.2-containing samples were non-significant, while a marked overall heterogeneity among the five RATs was observed. To score positive in these point-of-care tests, up to 22-fold (LoD50) or 68-fold (LoD95) higher viral loads were required for the worst performing compared to the best performing RAT. The rates of true-positive test results for these Omicron subvariant-containing samples in the highest viral load category (Ct values < 25) ranged between 44.7 and 91.1%, while they dropped to 8.7 to 22.7% for samples with intermediate Ct values (25-30). In light of recent reports on the emergence of two novel Omicron-BA.2 subvariants, Omicron-BA.2.75 and BJ.1, awareness must be increased for the overall reduced detection rate and marked differences in RAT performance for these Omicron subvariants.

2.
Life Sci Alliance ; 6(6)2023 06.
Article in English | MEDLINE | ID: covidwho-2273866

ABSTRACT

The IFN system constitutes a powerful antiviral defense machinery. Consequently, effective IFN responses protect against severe COVID-19 and exogenous IFNs inhibit SARS-CoV-2 in vitro. However, emerging SARS-CoV-2 variants of concern (VOCs) may have evolved reduced IFN sensitivity. Here, we determined differences in replication and IFN susceptibility of an early SARS-CoV-2 isolate (NL-02-2020) and the Alpha, Beta, Gamma, Delta, and Omicron VOCs in Calu-3 cells, iPSC-derived alveolar type-II cells (iAT2) and air-liquid interface (ALI) cultures of primary human airway epithelial cells. Our data show that Alpha, Beta, and Gamma replicated to similar levels as NL-02-2020. In comparison, Delta consistently yielded higher viral RNA levels, whereas Omicron was attenuated. All viruses were inhibited by type-I, -II, and -III IFNs, albeit to varying extend. Overall, Alpha was slightly less sensitive to IFNs than NL-02-2020, whereas Beta, Gamma, and Delta remained fully sensitive. Strikingly, Omicron BA.1 was least restricted by exogenous IFNs in all cell models. Our results suggest that enhanced innate immune evasion rather than higher replication capacity contributed to the effective spread of Omicron BA.1.


Subject(s)
COVID-19 , Interferons , Humans , Interferons/pharmacology , SARS-CoV-2 , Antiviral Agents/pharmacology
3.
Infection ; 2022 Aug 20.
Article in English | MEDLINE | ID: covidwho-2231037

ABSTRACT

PURPOSE: The risk of secondary zoonotic transmission of SARS-CoV-2 from pet animals remains unclear. Here, we report on a 44 year old Caucasian male presenting to our clinic with COVID-19 pneumonia, who reported that his dog displayed respiratory signs shortly prior to his infection. The dog tested real-time-PCR (RT-PCR) positive for SARS-CoV-2 RNA and the timeline of events suggested a transmission from the dog to the patient. METHODS: RT-PCR and serological assays were used to confirm SARS-CoV-2 infection in the nasopharyngeal tract in the dog and the patient. We performed SARS-CoV-2-targeted amplicon-based next generation sequencing of respiratory samples from the dog and patient for sequence comparisons. RESULTS: SARS-CoV-2 infection of the dog was confirmed by three independent PCR-positive pharyngeal swabs and subsequent seroconversion. Sequence analysis identified two separate SARS-CoV-2 lineages in the canine and the patient's respiratory samples. The timeline strongly suggested dog-to-human transmission, yet due to the genetic distance of the canine and the patient's samples paired-transmission was highly unlikely. CONCLUSION: The results of this case support current knowledge about the low risk of secondary zoonotic dog-to-human transmissions of SARS-CoV-2 and emphasizes the strength of genomic sequencing in deciphering viral transmission chains.

4.
Nat Commun ; 13(1): 5586, 2022 09 23.
Article in English | MEDLINE | ID: covidwho-2042319

ABSTRACT

Antibodies against the spike protein of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) can drive adaptive evolution in immunocompromised patients with chronic infection. Here we longitudinally analyze SARS-CoV-2 sequences in a B cell-depleted, lymphoma patient with chronic, ultimately fatal infection, and identify three mutations in the spike protein that dampen convalescent plasma-mediated neutralization of SARS-CoV-2. Additionally, four mutations emerge in non-spike regions encoding three CD8 T cell epitopes, including one nucleoprotein epitope affected by two mutations. Recognition of each mutant peptide by CD8 T cells from convalescent donors is reduced compared to its ancestral peptide, with additive effects resulting from double mutations. Querying public SARS-CoV-2 sequences shows that these mutations have independently emerged as homoplasies in circulating lineages. Our data thus suggest that potential impacts of CD8 T cells on SARS-CoV-2 mutations, at least in those with humoral immunodeficiency, warrant further investigation to inform on vaccine design.


Subject(s)
COVID-19 , Lymphoma , Vaccines , CD8-Positive T-Lymphocytes , COVID-19/therapy , Epitopes, T-Lymphocyte/genetics , Humans , Immunization, Passive , Mutation , Nucleoproteins/genetics , Peptides/genetics , SARS-CoV-2 , Spike Glycoprotein, Coronavirus/genetics , COVID-19 Serotherapy
5.
EMBO J ; 41(17): e111608, 2022 09 01.
Article in English | MEDLINE | ID: covidwho-1934722

ABSTRACT

The SARS-CoV-2 infection cycle is a multistage process that relies on functional interactions between the host and the pathogen. Here, we repurposed antiviral drugs against both viral and host enzymes to pharmaceutically block methylation of the viral RNA 2'-O-ribose cap needed for viral immune escape. We find that the host cap 2'-O-ribose methyltransferase MTr1 can compensate for loss of viral NSP16 methyltransferase in facilitating virus replication. Concomitant inhibition of MTr1 and NSP16 efficiently suppresses SARS-CoV-2 replication. Using in silico target-based drug screening, we identify a bispecific MTr1/NSP16 inhibitor with anti-SARS-CoV-2 activity in vitro and in vivo but with unfavorable side effects. We further show antiviral activity of inhibitors that target independent stages of the host SAM cycle providing the methyltransferase co-substrate. In particular, the adenosylhomocysteinase (AHCY) inhibitor DZNep is antiviral in in vitro, in ex vivo, and in a mouse infection model and synergizes with existing COVID-19 treatments. Moreover, DZNep exhibits a strong immunomodulatory effect curbing infection-induced hyperinflammation and reduces lung fibrosis markers ex vivo. Thus, multispecific and metabolic MTase inhibitors constitute yet unexplored treatment options against COVID-19.


Subject(s)
COVID-19 Drug Treatment , SARS-CoV-2 , Animals , Antiviral Agents/pharmacology , Inflammation/drug therapy , Methyltransferases/metabolism , Mice , RNA Caps/metabolism , RNA, Viral/genetics , Ribose , Viral Nonstructural Proteins/genetics
6.
J Virol ; 96(11): e0059422, 2022 06 08.
Article in English | MEDLINE | ID: covidwho-1840553

ABSTRACT

It has recently been shown that an early SARS-CoV-2 isolate (NL-02-2020) hijacks interferon-induced transmembrane proteins (IFITMs) for efficient replication in human lung cells, cardiomyocytes, and gut organoids. To date, several "variants of concern" (VOCs) showing increased infectivity and resistance to neutralization have emerged and globally replaced the early viral strains. Here, we determined whether the five current SARS-CoV-2 VOCs (Alpha, Beta, Gamma, Delta, and Omicron) maintained the dependency on IFITM proteins for efficient replication. We found that depletion of IFITM2 strongly reduces viral RNA production by all VOCs in the human epithelial lung cancer cell line Calu-3. Silencing of IFITM1 had modest effects, while knockdown of IFITM3 resulted in an intermediate phenotype. Strikingly, depletion of IFITM2 generally reduced infectious virus production by more than 4 orders of magnitude. In addition, an antibody directed against the N terminus of IFITM2 inhibited SARS-CoV-2 VOC replication in induced pluripotent stem cell (iPSC)-derived alveolar epithelial type II cells, thought to represent major viral target cells in the lung. In conclusion, endogenously expressed IFITM proteins (especially IFITM2) are critical cofactors for efficient replication of genuine SARS-CoV-2 VOCs, including the currently dominant Omicron variant. IMPORTANCE Recent data indicate that SARS-CoV-2 requires endogenously expressed IFITM proteins for efficient infection. However, the results were obtained with an early SARS-CoV-2 isolate. Thus, it remained to be determined whether IFITMs are also important cofactors for infection of emerging SARS-CoV-2 VOCs that outcompeted the original strains in the meantime. This includes the Omicron VOC, which currently dominates the pandemic. Here, we show that depletion of endogenous IFITM2 expression almost entirely prevents productive infection of Alpha, Beta, Gamma, Delta, and Omicron SARS-CoV-2 VOCs in human lung cells. In addition, an antibody targeting the N terminus of IFITM2 inhibited SARS-CoV-2 VOC replication in iPSC-derived alveolar epithelial type II cells. Our results show that SARS-CoV-2 VOCs, including the currently dominant Omicron variant, are strongly dependent on IFITM2 for efficient replication, suggesting a key proviral role of IFITMs in viral transmission and pathogenicity.


Subject(s)
Lung , Membrane Proteins , SARS-CoV-2 , Virus Replication , COVID-19/virology , Cell Line, Tumor , Humans , Lung/virology , Membrane Proteins/genetics , Membrane Proteins/metabolism , RNA-Binding Proteins/genetics , RNA-Binding Proteins/metabolism , SARS-CoV-2/genetics , SARS-CoV-2/physiology , Virus Internalization
7.
Graefes Arch Clin Exp Ophthalmol ; 260(5): 1789-1797, 2022 May.
Article in English | MEDLINE | ID: covidwho-1787813

ABSTRACT

PURPOSE: To detect SARS-CoV-2 RNA in post-mortem human eyes. Ocular symptoms are common in patients with COVID-19. In some cases, they can occur before the onset of respiratory and other symptoms. Accordingly, SARS-CoV-2 RNA has been detected in conjunctival samples and tear film of patients suffering from COVID-19. However, the detection and clinical relevance of intravitreal SARS-CoV-2 RNA still remain unclear due to so far contradictory reports in the literature. METHODS: In our study 20 patients with confirmed diagnosis of COVID-19 were evaluated post-mortem to assess the conjunctival and intraocular presence of SARS-CoV-2 RNA using sterile pulmonary and conjunctival swabs as well as intravitreal biopsies (IVB) via needle puncture. SARS-CoV-2 PCR and whole genome sequencing from the samples of the deceased patients were performed. Medical history and comorbidities of all subjects were recorded and analyzed for correlations with viral data. RESULTS: SARS-CoV-2 RNA was detected in 10 conjunctival (50%) and 6 vitreal (30%) samples. SARS-CoV-2 whole genome sequencing showed the distribution of cases largely reflecting the frequency of circulating lineages in the Munich area at the time of examination with no preponderance of specific variants. Especially there was no association between the presence of SARS-CoV-2 RNA in IVBs and infection with the variant of concern (VOC) alpha. Viral load in bronchial samples correlated positively with load in conjunctiva but not the vitreous. CONCLUSION: SARS-CoV-2 RNA can be detected post mortem in conjunctival tissues and IVBs. This is relevant to the planning of ophthalmologic surgical procedures in COVID-19 patients, such as pars plana vitrectomy or corneal transplantation. Furthermore, not only during surgery but also in an outpatient setting it is important to emphasize the need for personal protection in order to avoid infection and spreading of SARS-CoV-2. Prospective studies are needed, especially to determine the clinical relevance of conjunctival and intravitreal SARS-CoV-2 detection concerning intraocular affection in active COVID-19 state and in post-COVID syndrome.


Subject(s)
COVID-19 , SARS-CoV-2 , COVID-19/diagnosis , Conjunctiva , Humans , RNA, Viral/genetics , SARS-CoV-2/genetics , Tears/chemistry
8.
Med Oncol ; 39(6): 104, 2022 Apr 10.
Article in English | MEDLINE | ID: covidwho-1782949

ABSTRACT

Limited knowledge exists on the effectiveness of preventive preparedness plans for the care of outpatient cancer patients during epidemics or pandemics. To ensure adequate, timely and continuous clinical care for this highly vulnerable population, we propose the establishment of preventive standard safety protocols providing effective early phase identification of outbreaks at outpatient cancer facilities and communicating adapted standards of care. The prospective cohort study Protect-CoV conducted at the LMU Klinikum from mid-March to June 2020 investigated the effectiveness of a rapid, proactive and methodical response to protect patients and interrupt SARS-CoV-2 transmission chains during the first pandemic wave. The implemented measures reduced the risk of infection of individual cancer patients and ensured safe adjunctive infusion therapy in an outpatient setting during the early COVID-19 pandemic. In addition to the immediate implementation of standard hygiene procedures, our results underscore the importance of routine PCR testing for the identification of asymptomatic or pre-symptomatic COVID-19 cases and immediate tracing of positive cases and their contacts. While more prospective controlled studies are needed to confirm these results, our study illustrates the importance of including preventative testing and tracing measures in the standard risk reduction procedures at all out patient cancer centers.


Subject(s)
COVID-19 , Pandemics , Ambulatory Care Facilities , Cohort Studies , Humans , Pandemics/prevention & control , Prospective Studies , Risk Reduction Behavior , SARS-CoV-2
9.
Nat Med ; 28(3): 496-503, 2022 03.
Article in English | MEDLINE | ID: covidwho-1655606

ABSTRACT

Infection-neutralizing antibody responses after severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection or coronavirus disease 2019 vaccination are an essential component of antiviral immunity. Antibody-mediated protection is challenged by the emergence of SARS-CoV-2 variants of concern (VoCs) with immune escape properties, such as omicron (B.1.1.529), which is rapidly spreading worldwide. Here we report neutralizing antibody dynamics in a longitudinal cohort of coronavirus disease 2019 convalescent and infection-naive individuals vaccinated with mRNA BNT162b2 by quantifying SARS-CoV-2 spike protein antibodies and determining their avidity and neutralization capacity in serum. Using live-virus neutralization assays, we show that a superior infection-neutralizing capacity against all VoCs, including omicron, developed after either two vaccinations in convalescents or a third vaccination or breakthrough infection of twice-vaccinated, naive individuals. These three consecutive spike antigen exposures resulted in an increasing neutralization capacity per anti-spike antibody unit and were paralleled by stepwise increases in antibody avidity. We conclude that an infection-plus-vaccination-induced hybrid immunity or a triple immunization can induce high-quality antibodies with superior neutralization capacity against VoCs, including omicron.


Subject(s)
BNT162 Vaccine , COVID-19 , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , BNT162 Vaccine/immunology , COVID-19/immunology , COVID-19/prevention & control , Humans , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/immunology , Vaccination
10.
Med Microbiol Immunol ; 211(1): 71-77, 2022 Feb.
Article in English | MEDLINE | ID: covidwho-1640849

ABSTRACT

On November 26, 2021, the World Health Organization classified B.1.1.529 as a severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variant of concern (VoC), named omicron. Spike-gene dropouts in conventional SARS-CoV-2 PCR systems have been reported over the last weeks as indirect diagnostic evidence for the identification of omicron. Here, we report the combination of PCRs specific for heavily mutated sites in the spike gene and nanopore-based full-length genome sequencing for the rapid and sensitive identification of the first four COVID-19 patients diagnosed in Germany to be infected with omicron on November 28, 2021. This study will assist the unambiguous laboratory-based diagnosis and global surveillance for this highly contagious VoC with an unprecedented degree of humoral immune escape. Moreover, we propose that specialized diagnostic laboratories should continuously update their assays for variant-specific PCRs in the spike gene of SARS-CoV-2 to readily detect and diagnose emerging variants of interest and VoCs. The combination with established nanopore sequencing procedures allows both the rapid confirmation by whole genome sequencing as well as the sensitive identification of newly emerging variants of this pandemic ß-coronavirus in years to come.


Subject(s)
COVID-19 , Nanopore Sequencing , Humans , Mutation , Polymerase Chain Reaction , SARS-CoV-2
11.
Paedagogica Historica ; : 1-21, 2022.
Article in English | Taylor & Francis | ID: covidwho-1625965
12.
Euro Surveill ; 26(43)2021 10.
Article in English | MEDLINE | ID: covidwho-1547185

ABSTRACT

BackgroundIn the SARS-CoV-2 pandemic, viral genomes are available at unprecedented speed, but spatio-temporal bias in genome sequence sampling precludes phylogeographical inference without additional contextual data.AimWe applied genomic epidemiology to trace SARS-CoV-2 spread on an international, national and local level, to illustrate how transmission chains can be resolved to the level of a single event and single person using integrated sequence data and spatio-temporal metadata.MethodsWe investigated 289 COVID-19 cases at a university hospital in Munich, Germany, between 29 February and 27 May 2020. Using the ARTIC protocol, we obtained near full-length viral genomes from 174 SARS-CoV-2-positive respiratory samples. Phylogenetic analyses using the Auspice software were employed in combination with anamnestic reporting of travel history, interpersonal interactions and perceived high-risk exposures among patients and healthcare workers to characterise cluster outbreaks and establish likely scenarios and timelines of transmission.ResultsWe identified multiple independent introductions in the Munich Metropolitan Region during the first weeks of the first pandemic wave, mainly by travellers returning from popular skiing areas in the Alps. In these early weeks, the rate of presumable hospital-acquired infections among patients and in particular healthcare workers was high (9.6% and 54%, respectively) and we illustrated how transmission chains can be dissected at high resolution combining virus sequences and spatio-temporal networks of human interactions.ConclusionsEarly spread of SARS-CoV-2 in Europe was catalysed by superspreading events and regional hotspots during the winter holiday season. Genomic epidemiology can be employed to trace viral spread and inform effective containment strategies.


Subject(s)
COVID-19 , Cross Infection , Cross Infection/epidemiology , Genome, Viral , Genomics , Germany/epidemiology , Hospitals , Humans , Phylogeny , SARS-CoV-2
13.
Clin Infect Dis ; 73(9): e3055-e3065, 2021 11 02.
Article in English | MEDLINE | ID: covidwho-1501051

ABSTRACT

BACKGROUND: High infection rates among healthcare personnel in an uncontained pandemic can paralyze health systems due to staff shortages. Risk constellations and rates of seroconversion for healthcare workers (HCWs) during the first wave of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic are still largely unclear. METHODS: Healthcare personnel (n = 300) on different organizational units in the LMU Munich University Hospital were included and followed in this prospective longitudinal study from 24 March until 7 July 2020. Participants were monitored in intervals of 2 to 6 weeks using different antibody assays for serological testing and questionnaires to evaluate risk contacts. In a subgroup of infected participants, we obtained nasopharyngeal swabs to perform whole-genome sequencing for outbreak characterization. RESULTS: HCWs involved in patient care on dedicated coronavirus disease 2019 (COVID-19) wards or on regular non-COVID-19 wards showed a higher rate of SARS-CoV-2 seroconversion than staff in the emergency department and non-frontline personnel. The landscape of risk contacts in these units was dynamic, with a decrease in unprotected risk contacts in the emergency department and an increase on non-COVID-19 wards. Both intensity and number of risk contacts were associated with higher rates of seroconversion. On regular wards, staff infections tended to occur in clusters, while infections on COVID-19 wards were less frequent and apparently independent of each other. CONCLUSIONS: Risk of SARS-CoV-2 infection for frontline HCWs was increased during the first pandemic wave in southern Germany. Stringent measures for infection control are essential to protect all patient-facing staff during the ongoing pandemic.


Subject(s)
COVID-19 , SARS-CoV-2 , Germany/epidemiology , Health Personnel , Hospitals, University , Humans , Longitudinal Studies , Pandemics , Prospective Studies
14.
Med Microbiol Immunol ; 210(5-6): 263-275, 2021 Dec.
Article in English | MEDLINE | ID: covidwho-1366361

ABSTRACT

A versatile portfolio of diagnostic tests is essential for the containment of the severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2) pandemic. Besides nucleic acid-based test systems and point-of-care (POCT) antigen (Ag) tests, quantitative, laboratory-based nucleocapsid Ag tests for SARS-CoV-2 have recently been launched. Here, we evaluated four commercial Ag tests on automated platforms and one POCT to detect SARS-CoV-2. We evaluated PCR-positive (n = 107) and PCR-negative (n = 303) respiratory swabs from asymptomatic and symptomatic patients at the end of the second pandemic wave in Germany (February-March 2021) as well as clinical isolates EU1 (B.1.117), variant of concern (VOC) Alpha (B.1.1.7) or Beta (B.1.351), which had been expanded in a biosafety level 3 laboratory. The specificities of automated SARS-CoV-2 Ag tests ranged between 97.0 and 99.7% (Lumipulse G SARS-CoV-2 Ag (Fujirebio): 97.03%, Elecsys SARS-CoV-2 Ag (Roche Diagnostics): 97.69%; LIAISON® SARS-CoV-2 Ag (Diasorin) and SARS-CoV-2 Ag ELISA (Euroimmun): 99.67%). In this study cohort of hospitalized patients, the clinical sensitivities of tests were low, ranging from 17.76 to 52.34%, and analytical sensitivities ranged from 420,000 to 25,000,000 Geq/ml. In comparison, the detection limit of the Roche Rapid Ag Test (RAT) was 9,300,000 Geq/ml, detecting 23.58% of respiratory samples. Receiver-operating-characteristics (ROCs) and Youden's index analyses were performed to further characterize the assays' overall performance and determine optimal assay cutoffs for sensitivity and specificity. VOCs carrying up to four amino acid mutations in nucleocapsid were detected by all five assays with characteristics comparable to non-VOCs. In summary, automated, quantitative SARS-CoV-2 Ag tests show variable performance and are not necessarily superior to a standard POCT. The efficacy of any alternative testing strategies to complement nucleic acid-based assays must be carefully evaluated by independent laboratories prior to widespread implementation.


Subject(s)
Antigens, Viral/analysis , COVID-19 Serological Testing/methods , COVID-19/virology , SARS-CoV-2/isolation & purification , Antigens, Viral/immunology , Automation/economics , Automation/methods , COVID-19/diagnosis , COVID-19 Serological Testing/economics , Cohort Studies , False Negative Reactions , Germany , Humans , SARS-CoV-2/genetics , SARS-CoV-2/immunology , Sensitivity and Specificity
15.
Sci Total Environ ; 797: 149031, 2021 Nov 25.
Article in English | MEDLINE | ID: covidwho-1322345

ABSTRACT

Wastewater-based epidemiology (WBE) is a tool now increasingly proposed to monitor the SARS-CoV-2 burden in populations without the need for individual mass testing. It is especially interesting in metropolitan areas where spread can be very fast, and proper sewage systems are available for sampling with short flow times and thus little decay of the virus. We started in March 2020 to set up a once-a-week qualified spot sampling protocol in six different locations in Munich carefully chosen to contain primarily wastewater of permanent residential areas, rather than industry or hospitals. We used RT-PCR and sequencing to track the spread of SARS-CoV-2 in the Munich population with temporo-spatial resolution. The study became fully operational in mid-April 2020 and has been tracking SARS-CoV-2 RNA load weekly for one year. Sequencing of the isolated viral RNA was performed to obtain information about the presence and abundance of variants of concern in the Munich area over time. We demonstrate that the evolution of SARS-CoV-2 RNA loads (between <7.5 and 3874/ml) in these different areas within Munich correlates well with official seven day incidence notification data (between 0.0 and 327 per 100,000) obtained from the authorities within the respective region. Wastewater viral loads predicted the dynamic of SARS-CoV-2 local incidence about 3 weeks in advance of data based on respiratory swab analyses. Aligning with multiple different point-mutations characteristic for certain variants of concern, we could demonstrate the gradual increase of variant of concern B.1.1.7 in the Munich population beginning in January 2021, weeks before it became apparent in sequencing results of swabs samples taken from patients living in Munich. Overall, the study highlights the potential of WBE to monitor the SARS-CoV-2 pandemic, including the introduction of variants of concern in a local population.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , RNA, Viral , Sewage , Wastewater
16.
Euro Surveill ; 25(24)2020 06.
Article in English | MEDLINE | ID: covidwho-605372

ABSTRACT

Containment strategies and clinical management of coronavirus disease (COVID-19) patients during the current pandemic depend on reliable diagnostic PCR assays for the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Here, we compare 11 different RT-PCR test systems used in seven diagnostic laboratories in Germany in March 2020. While most assays performed well, we identified detection problems in a commonly used assay that may have resulted in false-negative test results during the first weeks of the pandemic.


Subject(s)
Betacoronavirus/genetics , Clinical Laboratory Techniques/methods , Coronavirus Infections/diagnosis , Diagnostic Equipment , Pneumonia, Viral/diagnosis , COVID-19 , COVID-19 Testing , COVID-19 Vaccines , Clinical Laboratory Techniques/instrumentation , Feces/virology , Germany , Humans , Laboratories , Multiplex Polymerase Chain Reaction/instrumentation , Multiplex Polymerase Chain Reaction/methods , Pandemics , Real-Time Polymerase Chain Reaction/instrumentation , Real-Time Polymerase Chain Reaction/methods , Reverse Transcriptase Polymerase Chain Reaction/instrumentation , Reverse Transcriptase Polymerase Chain Reaction/methods , SARS-CoV-2 , Sensitivity and Specificity
SELECTION OF CITATIONS
SEARCH DETAIL