Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
Trials ; 22(1): 643, 2021 Sep 20.
Article in English | MEDLINE | ID: covidwho-1435265

ABSTRACT

BACKGROUND: Acute respiratory distress syndrome (ARDS) is a complex clinical diagnosis with various possible etiologies. One common feature, however, is pulmonary permeability edema, which leads to an increased alveolar diffusion pathway and, subsequently, impaired oxygenation and decarboxylation. A novel inhaled peptide agent (AP301, solnatide) was shown to markedly reduce pulmonary edema in animal models of ARDS and to be safe to administer to healthy humans in a Phase I clinical trial. Here, we present the protocol for a Phase IIB clinical trial investigating the safety and possible future efficacy endpoints in ARDS patients. METHODS: This is a randomized, placebo-controlled, double-blind intervention study. Patients with moderate to severe ARDS in need of mechanical ventilation will be randomized to parallel groups receiving escalating doses of solnatide or placebo, respectively. Before advancing to a higher dose, a data safety monitoring board will investigate the data from previous patients for any indication of patient safety violations. The intervention (application of the investigational drug) takes places twice daily over the course of 7 days, ensued by a follow-up period of another 21 days. DISCUSSION: The patients to be included in this trial will be severely sick and in need of mechanical ventilation. The amount of data to be collected upon screening and during the course of the intervention phase is substantial and the potential timeframe for inclusion of any given patient is short. However, when prepared properly, adherence to this protocol will make for the acquisition of reliable data. Particular diligence needs to be exercised with respect to informed consent, because eligible patients will most likely be comatose and/or deeply sedated at the time of inclusion. TRIAL REGISTRATION: This trial was prospectively registered with the EU Clinical trials register (clinicaltrialsregister.eu). EudraCT Number: 2017-003855-47 .


Subject(s)
COVID-19 , Pulmonary Edema , Respiratory Distress Syndrome , Double-Blind Method , Edema , Humans , Peptides, Cyclic , Permeability , Pulmonary Edema/diagnosis , Pulmonary Edema/drug therapy , Respiratory Distress Syndrome/diagnosis , Respiratory Distress Syndrome/drug therapy , SARS-CoV-2 , Treatment Outcome
2.
Thromb J ; 19(1): 39, 2021 Jun 02.
Article in English | MEDLINE | ID: covidwho-1255939

ABSTRACT

BACKGROUND: Coronavirus disease 2019 (COVID-19) associated coagulopathy (CAC) leads to thromboembolic events in a high number of critically ill COVID-19 patients. However, specific diagnostic or therapeutic algorithms for CAC have not been established. In the current study, we analyzed coagulation abnormalities with point-of-care testing (POCT) and their relation to hemostatic complications in patients suffering from COVID-19 induced Acute Respiratory Distress Syndrome (ARDS). Our hypothesis was that specific diagnostic patterns can be identified in patients with COVID-19 induced ARDS at risk of thromboembolic complications utilizing POCT. METHODS: This is a single-center, retrospective observational study. Longitudinal data from 247 rotational thromboelastometries (Rotem®) and 165 impedance aggregometries (Multiplate®) were analysed in 18 patients consecutively admitted to the ICU with a COVID-19 induced ARDS between March 12th to June 30th, 2020. RESULTS: Median age was 61 years (IQR: 51-69). Median PaO2/FiO2 on admission was 122 mmHg (IQR: 87-189), indicating moderate to severe ARDS. Any form of hemostatic complication occurred in 78 % of the patients with deep vein/arm thrombosis in 39 %, pulmonary embolism in 22 %, and major bleeding in 17 %. In Rotem® elevated A10 and maximum clot firmness (MCF) indicated higher clot strength. The delta between EXTEM A10 minus FIBTEM A10 (ΔA10) > 30 mm, depicting the sole platelet-part of clot firmness, was associated with a higher risk of thromboembolic events (OD: 3.7; 95 %CI 1.3-10.3; p = 0.02). Multiplate® aggregometry showed hypoactive platelet function. There was no correlation between single Rotem® and Multiplate® parameters at intensive care unit (ICU) admission and thromboembolic or bleeding complications. CONCLUSIONS: Rotem® and Multiplate® results indicate hypercoagulability and hypoactive platelet dysfunction in COVID-19 induced ARDS but were all in all poorly related to hemostatic complications..

3.
Front Med (Lausanne) ; 7: 599533, 2020.
Article in English | MEDLINE | ID: covidwho-1005805

ABSTRACT

Background: Proportions of patients dying from the coronavirus disease-19 (COVID-19) vary between different countries. We report the characteristics; clinical course and outcome of patients requiring intensive care due to COVID-19 induced acute respiratory distress syndrome (ARDS). Methods: This is a retrospective, observational multicentre study in five German secondary or tertiary care hospitals. All patients consecutively admitted to the intensive care unit (ICU) in any of the participating hospitals between March 12 and May 4, 2020 with a COVID-19 induced ARDS were included. Results: A total of 106 ICU patients were treated for COVID-19 induced ARDS, whereas severe ARDS was present in the majority of cases. Survival of ICU treatment was 65.0%. Median duration of ICU treatment was 11 days; median duration of mechanical ventilation was 9 days. The majority of ICU treated patients (75.5%) did not receive any antiviral or anti-inflammatory therapies. Venovenous (vv) ECMO was utilized in 16.3%. ICU triage with population-level decision making was not necessary at any time. Univariate analysis associated older age, diabetes mellitus or a higher SOFA score on admission with non-survival during ICU stay. Conclusions: A high level of care adhering to standard ARDS treatments lead to a good outcome in critically ill COVID-19 patients.

4.
PLoS One ; 15(11): e0242917, 2020.
Article in English | MEDLINE | ID: covidwho-969203

ABSTRACT

BACKGROUND: The viral load and tissue distribution of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) remain important questions. The current study investigated SARS-CoV-2 viral load, biodistribution and anti-SARS-CoV-2 antibody formation in patients suffering from severe corona virus disease 2019 (COVID-19) induced acute respiratory distress syndrome (ARDS). METHODS: This is a retrospective single-center study in 23 patients with COVID-19-induced ARDS. Data were collected within routine intensive care. SARS-CoV-2 viral load was assessed via reverse transcription quantitative polymerase chain reaction (RT-qPCR). Overall, 478 virology samples were taken. Anti-SARS-CoV-2-Spike-receptor binding domain (RBD) antibody detection of blood samples was performed with an enzyme-linked immunosorbent assay. RESULTS: Most patients (91%) suffered from severe ARDS during ICU treatment with a 30-day mortality of 30%. None of the patients received antiviral treatment. Tracheal aspirates tested positive for SARS-CoV-2 in 100% of the cases, oropharyngeal swabs only in 77%. Blood samples were positive in 26% of the patients. No difference of viral load was found in tracheal or blood samples with regard to 30-day survival or disease severity. SARS-CoV-2 was never found in dialysate. Serologic testing revealed significantly lower concentrations of SARS-CoV-2 neutralizing IgM and IgA antibodies in survivors compared to non-survivors (p = 0.009). CONCLUSIONS: COVID-19 induced ARDS is accompanied by a high viral load of SARS-CoV-2 in tracheal aspirates, which remained detectable in the majority throughout intensive care treatment. Remarkably, SARS-CoV-2 RNA was never detected in dialysate even in patients with RNAemia. Viral load or the buildup of neutralizing antibodies was not associated with 30-day survival or disease severity.


Subject(s)
Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , COVID-19 Serological Testing/methods , COVID-19/complications , COVID-19/immunology , Respiratory Distress Syndrome/etiology , Respiratory Distress Syndrome/immunology , SARS-CoV-2/immunology , Aged , Antibodies, Neutralizing/blood , Antibodies, Viral/blood , COVID-19/epidemiology , COVID-19/virology , Enzyme-Linked Immunosorbent Assay , Female , Germany/epidemiology , Humans , Immunoglobulin A/blood , Immunoglobulin A/immunology , Immunoglobulin G/blood , Immunoglobulin G/immunology , Immunoglobulin M/blood , Immunoglobulin M/immunology , Male , Middle Aged , Protein Domains/immunology , RNA, Viral/genetics , Respiratory Distress Syndrome/virology , Retrospective Studies , Reverse Transcriptase Polymerase Chain Reaction , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/immunology , Viral Load/genetics
5.
Acta Anaesthesiol Scand ; 65(5): 629-632, 2021 05.
Article in English | MEDLINE | ID: covidwho-967889

ABSTRACT

BACKGROUND: Changes in pulmonary hemodynamics and ventilation/perfusion were proposed as hallmarks of Coronavirus disease 2019 (COVID-19)-induced acute respiratory distress syndrome (ARDS). Inhaled nitric oxide (iNO) may overcome these issues and improve arterial oxygenation. METHODS: We retrospectively analyzed arterial oxygenation and pulmonary vasoreactivity in seven COVID-19 ARDS patients receiving 20 ppm iNO for 15-30 minutes. RESULTS: The inhalation of NO significantly improved oxygenation. All patients with severe ARDS had higher partial pressures of oxygen and reduced pulmonary vascular resistance. Significant changes in pulmonary shunting were not observed. CONCLUSION: Overall, iNO could provide immediate help and delay respiratory deterioration in COVID-19-induced moderate to severe ARDS.


Subject(s)
COVID-19/drug therapy , Nitric Oxide/administration & dosage , Respiratory Distress Syndrome/drug therapy , SARS-CoV-2 , Administration, Inhalation , COVID-19/complications , Hemodynamics , Humans , Respiratory Distress Syndrome/physiopathology , Retrospective Studies
SELECTION OF CITATIONS
SEARCH DETAIL
...